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Lyme disease is an emerging infection that is caused by the Borrelia burgdorferi 

sensu lato complex.  These bacteria exist in nature through an enzootic life cycle 

involving Ixodes ticks and various reservoir hosts.  One way that this bacterium adapts 

to the different hosts in the enzootic cycle is through the expression of outer surface 

protein C (OspC).  OspC is a surface exposed lipoprotein encoded on circular plasmid 

26 that forms homodimers on the bacterial surface and has distinct conserved and 

variable portions of sequence.  When ospC is deleted, the spirochetes are unable to 

cause mammalian infection although the mechanism of this is unknown.  Additionally, 

OspC is thought to be involved in reservoir host specificity/association and in tissue 
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dissemination.  In order to better understand the functional domains of OspC, the 

different conserved and variable portions of this protein were investigated.    

Three conserved portions of OspC were investigated: (1) the conserved cysteine 

residue at position 130 (C130), (2) the last ten C-terminal amino acids (C10), and (3) 

ligand binding domain 1 (LBD1).  The C130 residue was mutated and this substitution 

disrupted OspC oligomerization in vitro and in vivo.  A B. burgdorferi strain lacking the 

C10 retained full infectivity and plasminogen binding.  The mutation of a single residue 

within LBD1 rendered B. burgdorferi noninfectious, indicating the importance of this 

domain in infection establishment.  

The variable portion of OspC was investigated by: (1) altering the surface charge 

of ligand binding domain 2 (LBD2), (2) inserting different OspC types into a constant 

genetic background, and (3) creating OspC hybrids.   Alteration of the surface charge of 

LBD2 by site directed mutagenesis resulted in a lack of persistence in mice.  By 

inserting an OspC type known to be noninfectious in mice into an infectious strain, 

infectivity was abolished.  Strains expressing OspC hybrids indicated that multiple 

domains of OspC are involved in species specificity.   

Together these analyses demonstrated that OspC is as important protein that 

plays multiple roles in pathogenesis. The work presented here helps to increase the 

understanding of this crucial protein and the strains described can be used to decipher 

the full function of OspC.              
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Chapter 1:  Introduction 

 

1.1  Lyme disease 

1.1.1  History 

Lyme disease, an emerging zoonotic infection, was recognized as a clinical 

disease in North America in 1977 (Steere et al., 1977a; Steere et al., 1977b; Steere et 

al., 1978).  The unusually large occurrence of cases of arthritis in children in Lyme, Old 

Lyme, and East Haddam, Connecticut during this time led to a large epidemiological 

study to identify the cause of this disease.  In 1982, a tick-borne spirochete was 

discovered by Willy Burgdorfer, Allen Steere and Jorge Benach.  Dr. Burgdorfer was 

able to isolate these previously undescribed spirochetes from hard-body Ixodes ticks 

from Shelter Island, New York while Drs. Steere and Benach were able to isolate the 

spirochetes from patients exhibiting symptoms of Lyme disease, implicating the 

spirochetes as the causative agent (Burgdorfer et al., 1982; Steere et al., 1983).  The 

newly discovered spirochete was able to be cultured in media that had been developed 

for other spirochete species and was found to belong to the genus Borrelia.  This 

spirochete was eventually designated Borrelia burgdorferi (Johnson et al., 1984).    

Polymerase chain reaction (PCR) was used retrospectively on preserved tissue 

samples and showed that B. burgdorferi was a distinct clinical entity that could be 

1
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detected in samples dating as far back as 1894 (Marshall et al., 1994; Persing et al., 

1990).  Similar symptoms of Lyme disease had been noted during the 20th century in 

Europe.  Shortly after the discovery of B. burgdorferi in North America these spirochetes 

were also recognized as a cause of Lyme disease in Europe followed by the discovery 

of the other Lyme spirochete species B.afzelii and B.garinii.             

1.1.2  Epidemiology 

Lyme disease is the most commonly reported vector-borne disease in North 

America and Europe.  According to the Centers for Disease Control and Prevention, 

approximately 30,000 cases of Lyme disease were reported in 2009, although the 

actual number of cases is thought to be much higher due to lack of reporting and correct 

diagnosis (Yound, 1998) (Figure 1A).  Since the identification of the causative agent of 

Lyme disease in 1982, the number of cases has steadily risen each year.    Cases of 

Lyme disease in the United States are concentrated to the northeast with the states of 

Delaware, Connecticut, New Jersey, Massachusetts, Pennsylvania, and New York 

having the highest per capita incidences (McNabb et al., 2007).  In addition to the 

northeastern states, the midwestern states of Wisconsin and Minnesota also report a 

high number of Lyme disease cases (Figure 1B).  Lyme disease exhibits a bimodal age 

distribution with the peak ages being 5-9 and 55-59 years old.  There is no gender 

predilection of Lyme disease cases.  Cases of this disease usually occur between June 

and August when the nymphal ticks feed and people are most often to engage in 

outdoor activities (Bacon et al., 2008). 

1.1.3  Clinical disease 

2
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Figure 1.  Incidence and number of Lyme disease cases in the United States.  (A) Lyme 

disease case numbers from 1995-2009.  Shown are the number of cases reported to 

the Centers for Disease Control and Prevention.  (B) Lyme disease incidence map.  

Each spot on the map corresponds to one reported case.  The source of each figure is 

given below. 
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The bacteria that cause Lyme disease are transmitted primarily by the nymphal 

stage of infected Ixodes ticks.  The ticks must feed on their host for approximately 48 

hours in order for the spirochetes to migrate into the host tissue (Piesman, 1993).    

Once the spirochetes enter mammalian skin, they disseminate laterally from the site of 

the tick bite, resulting in the pathognomonic skin rash, erythema migrans (EM) (Afzelius, 

1910).  This “bull‟s eye” rash is called so due to a central zone of clearing that occurs in 

some patients.  The EM commonly occurs at the site of tick bite but in some patients 

this rash can occur on other parts of the body or not at all.  Other symptoms of early 

Lyme disease include fever, headache, arthralgia, regional lymphadenopathy, and 

malaise (Nadelman and Wormser, 1995).  If left untreated, Lyme disease can present 

with late stage sequelae such as arthritic, cardiac, neurological, and/or dermatological 

symptoms.  These different late stage symptoms can be debilitating and tend to 

associate with different species of Lyme Borrelia.  Severe dermatological symptoms are 

associated with B. afzelii while arthritic conditions occur commonly with B. burgdorferi 

infection and neurological complications occur more frequently with B. garinii (Balmelli 

and Piffaretti, 1995; Busch et al., 1996).  According to the Centers for Disease Control 

and Prevention, Lyme disease is usually diagnosed based on the presence of the 

erythema migrans.  Serological tests and PCR can also be used but the results are 

unreliable (Murray and Shapiro, 2010).  Lyme disease is treated with antibiotics 

although some controversy exists over the duration of antibiotic treatment and the route 

of antibiotic administration (Feder et al., 2007; Reid et al., 1998; Stricker, 2007).  This 

disease is typically treated with a 2-4 week course of the antibiotic doxycycline and 

when treated early, is generally responsive to this treatment.  Alternative antibiotics 

5
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include amoxicillin and ceftriaxone (Wormser et al., 2006).  Currently no vaccine for this 

disease is available for human use and the sole method of prevention is limiting 

exposure to the ticks that transmit the infection.     

1.2  Borrelia 

1.2.1  General characteristics 

The genus Borrelia is made up of spirochetes that are helically shaped, motile, 

and have two sets of periplasmic flagella in between the inner and outer membranes 

that are attached to each end of the periplasmic cylinder (Barbour and Hayes, 1986) 

(Figure 2).  Although the Borrelia are said to be Gram-negative organisms based on the 

presence of inner and outer membranes, they lack lipopolysaccharide (LPS) on their 

cell surface.  The Borrelia are microaerophilic and cultivated in a complex culture 

medium supplemented with rabbit serum.  These spirochetes need a rich medium and 

are completely host-dependent due to the fact that they lack most de novo amino acid, 

lipid, nucleotide, and enzyme cofactor synthesis (Fraser et al., 1997).  Optimal growth 

temperatures are between 33° and 37°C.  These spirochetes can be easily viewed using 

dark-field microscopy and typically range from 0.18 to 0.25 m in diameter and 4 to 30 

m in length (Barbour, 1984; Ruzic-Sabljic et al., 2006).  Members of this genus are 

primarily enzootic and are able to cause several different diseases including Lyme 

disease, epizootic bovine abortion, relapsing fever, and avian borreliosis, though only 

Lyme disease and relapsing fever affect humans.  There are two different forms of 

relapsing fever, louse-borne relapsing fever caused by B. recurrentis and tick-borne 

relapsing fever caused by B. hermsii and others.  Lyme disease in humans is caused by  

6
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Figure 2.  Fluorescent micrograph of B. burgdorferi.  The characteristic helical shape of 

the spirochetes can be seen.  Spirochetes were stained using BacLight Live/Dead 

fluorescent stain.  Live spirochetes stain green while dead spirochetes are red.    
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three Borrelia species; B. burgdorferi, B. afzelii, and B. garinii.  B. burgdorferi was the 

first species to be associated with Lyme disease and can be found worldwide while B. 

afzelii and B. garinii are only in Europe and Asia.   

1.2.2  Borrelia genetics           

The Borrelia have a very unique genome.  All members possess a large linear 

chromosome with various circular and linear plasmids.  The full genome sequence of 

the B. burgdorferi B31MI strain, a strain commonly used in the laboratory, was one of 

the first bacterial genomes to be determined (Fraser et al., 1997).  It was found that this 

strain contains 1516 open reading frames encoded on a 910 kbp linear chromosome, 

12 linear, and 9 circular plasmids, some of which appear to be prophage (Casjens et al., 

2000; Eggers and Samuels, 1999; Eggers et al., 2000; Fraser et al., 1997; Zhang and 

Marconi, 2005).  The plasmid content of different strains of B. burgdorferi can vary 

greatly (Iyer et al., 2003; Terekhova et al., 2006) and can change between in vitro and 

in vivo cultivation (Barbour, 1988; McDowell et al., 2001; Persing et al., 1994; Schwan 

et al., 1988).  Some plasmids are said to be universal and can be found in all B. 

burgdorferi isolates (e.g., cp26) while others plasmids are required for infectivity but not 

in vitro cultivation (e.g., lp25) (Byram et al., 2004; Grimm et al., 2004; Labandeira-Rey 

and Skare, 2001; Labandeira-Rey et al., 2003; Marconi et al., 1993a; Purser and Norris, 

2000; Tilly et al., 1997).  Several of the genes encoded on these plasmids are house-

keeping genes, but the majority of them are unique genes with unknown function 

(Barbour and Garon, 1987; Barbour and Garon, 1988).                                 

1.2.3  Enzootic life cycle 
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 The Borrelia are completely host-dependant and persist in nature through a 

complex enzootic life cycle.  For the Lyme disease spirochetes, this life cycle involves 

ticks of the Ixodes ricinus complex and a wide variety of animals that serve as reservoir 

hosts (Brown and Lane, 1992; Gern et al., 1998; Keirans et al., 1996).  In the 

northeastern and midwestern portions of North America, Ixodes scapularis (previously I. 

dammini (Oliver et al., 1993)) is the primary tick vector while I. pacificus vectors the 

spirochetes in the western United States (Lane et al., 1991).  Ixodes ricinus is the 

primary arthropod vector for species of Borrelia in Europe while I. persulcatus and I. 

nipponensis serve as vectors in Asia (Hengge et al., 2003).  Due to the fact that there is 

no transovarial transmission of the Lyme disease spirochetes (Barbour and Hayes, 

1986) animal reservoirs are necessary for maintenance of these bacteria in nature 

(Figure 3).  When larval ticks hatch out of eggs during the spring, they immediately 

begin questing after a blood meal, which they usually take on a small mammal or bird.  

It is often during this first blood meal that the ticks acquire a Borrelia infection.  After 

feeding to repletion the larvae molt into the nymphal stage and become dormant 

through the winter.  When the infected nymphs emerge in the late spring or early 

summer of the next year, they will take a blood meal on another animal, possibly 

transmitting the spirochetes.  There is a wide range of competent reservoir hosts 

including many species of small mammals and birds that can become infected during a 

blood meal, a major one in North America being the white-footed mouse Peromyscus 

leucopus (Gern et al., 1998; Keirans et al., 1996; Steere et al., 2004).  After this blood 

meal the ticks will molt into adults and feed on larger mammals such as deer.  These 

larger mammals are important in the enzootic cycle due to the fact that they can harbor  
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Figure 3.  Enzootic life cycle of B. burgdorferi.  Shown is the life cycle of the tick vector, 

Ixodes scapularis.  Spirochetes cycle through Ixodes tick vectors and animal reservoir 

hosts.         
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greater numbers of tick vectors and aid in spreading them over larger areas.  Humans 

often contract the Lyme spirochetes through an encounter with infected nymphal ticks 

but, due to the fact that they do not aid in the progression of the enzootic cycle, are 

considered incidental hosts.     

All the different hosts encountered by the Lyme Borrelia during their enzootic life 

cycle present a variety of different environments to which the spirochetes must adapt.    

One way that these bacteria are able to do this is through differential expression of 

many outer surface lipoproteins (Boardman et al., 2008; Brooks et al., 2003; Caimano et 

al., 2007; Revel et al., 2002; Rogers et al., 2009).  A well characterized example of this 

is the reciprocal expression of outer surface protein A (OspA) and outer surface protein 

C (OspC).               

1.3  Outer Surface Protein C (OspC) 

1.3.1  General characteristics 

Outer surface protein C (OspC) is an approximately 22 kDa surface exposed 

lipoprotein (Fuchs et al., 1992) that is expressed by all of the Lyme Borrelia.  This 

protein is encoded on the universal plasmid cp26, which is a highly stable plasmid 

present in all strains (Marconi et al., 1993a; Sadziene et al., 1993).  The crystal 

structure of OspC had been determined and shows that this protein is primarily alpha 

helical in structure, containing five alpha helices that are connected by six loops (Eicken 

et al., 2001; Kumaran et al., 2001b).  Additionally, OspC forms homodimers (Figure 4A) 

that are tethered to the outer membrane by an N-terminal tripalmitoyl-S-glyceryl-

cysteine (Brooks et al., 2006).  These homodimers are held together by hydrophobic  
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Figure 4.  Structure of OspC, conservation of residues, and location of putative ligand-

binding domains.  (A)  Two OspC monomers are shown with the conserved to variable 

residues indicated using a red to blue scale.  (B)  A VAST alignment is presented, using 

CN3D 4.1 of type A in purple (1GGQ), type I in yellow (1F1M), and type E in gray 

(1G5Z).  (C)  The OspC dimer is shown with the two putative ligand binding domains, 

LBD1 and LBD2, indicated.  Amino acid conservation is shown as in (A). 
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interactions between the amino acids at the dimeric interface and are thought to be the 

biologically active form of the protein, although higher order oligomers of this protein 

may occur (Eicken et al., 2001; Zuckert et al., 2001).  Expression of OspC is 

upregulated by spirochetes residing in the midgut of ticks when they take a blood meal.    

During this time, spirochetes migrate from the midgut to the salivary glands of the ticks 

and enter the host.  OspC remains expressed by spirochetes in the mammal for the first 

few weeks of infection before it is downregulated (Fingerle et al., 1995; Masuzawa et 

al., 1994; Schwan and Piesman, 2000).  Numerous studies have implicated the 

expression of OspC with the ability of the spirochetes to cause mammalian infection and 

it has been shown that mutant strains of the Lyme Borrelia lacking OspC are unable to 

cause infection by either the tick or needle inoculation route (Earnhart et al., 2010; 

Fingerle et al., 2007; Gilmore and Piesman, 2000; Grimm et al., 2004; Pal et al., 2004; 

Tilly et al., 2006; Tilly et al., 2007).     

1.3.2  Phylogenetics 

OspC is highly divergent in sequence.  Over 30 different OspC phyletic types 

have been identified (Earnhart and Marconi, 2007a; Seinost et al., 1999; Wang et al., 

1999) (Figure 5).  Within an OspC type, amino acid sequences are >95% identical, 

whereas between OspC types, identity ranges from 55-80% (Attie et al., 2007; Earnhart 

and Marconi, 2007a; Wang et al., 1999).  The sequence divergence that gives rise to 

the different phyletic types is located in distinct, surface-exposed domains of the protein 

(Earnhart et al., 2005; Earnhart et al., 2007) (Figure 4A).  Even though there is such  
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Figure 5.  Phylogenetic tree of OspC type from the Lyme Borrelia.  This phylogenetic 

tree was generated by aligning the ospC residues 20 – 200 (lacking the signal 

sequence) using Clustal X (http://www.clustal.org/) and NJ Plot (http://pbil.univ-

lyon1.fr/software/njplot.html).  Bootstrap values (1,000 trials) are shown at the nodes for 

critical differentiation.       
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sequence diversity between OspC types, these differences do not create structural 

differences between types (Figure 4B).  The domains that make up the variable portion 

of OspC are also highly antigenic during mammalian infection and elicit a type-specific 

humoral response.  An individual strain only produces one OspC type which remains 

stable during infection; however it has been demonstrated that multiple OspC types can 

be found in tick, animal, and human samples from distinct geographic areas (Alghaferi 

et al., 2005; Anderson and Norris, 2006; Earnhart et al., 2005; Lin et al., 2002; Wang et 

al., 1999).  Particular OspC types, specifically types A, B, I, and K, have been implicated 

in the development of invasive disease symptoms in humans (Lagal et al., 2003; 

Seinost et al., 1999) and further studies have suggested additional types which also 

show this association (Alghaferi et al., 2005; Earnhart et al., 2005).  It has also been 

shown that certain OspC types tend to be commonly associated with different reservoir 

hosts (Brisson and Dykhuizen, 2004).   

1.3.3  Potential structure/function determinants 

While it has been shown that expression of OspC is crucial for mammalian 

infection, the actual function of this protein remains unknown.  Although one study has 

proposed that OspC itself has no actual function other than providing membrane 

stability (Xu et al., 2008), other studies have proposed that OspC plays multiple roles in 

the pathogenesis of the Lyme Borrelia.  OspC may function in three distinct areas of 

Borrelia pathogenesis:  establishment of mammalian infection, reservoir host species 

specificity/association, and tissue dissemination/ability to cause invasive disease 

(Alghaferi et al., 2005; Brisson and Dykhuizen, 2004; Earnhart et al., 2005; Lagal et al., 

2003; Seinost et al., 1999).  In the investigation of these different functions of OspC, 
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several potential ligands have been proposed for OspC, including Salp15 and 

plasminogen.  Salp15, a tick-derived protein with immunomodulatory activity, is able to 

bind OspC in vitro (Anguita et al., 2002; Das et al., 2001; Hovius et al., 2007).  The 

interaction between these two proteins may serve to protect the spirochetes from 

antibody-mediated killing as they enter the host tissues (Hovius et al., 2008; 

Ramamoorthi et al., 2005) and aid in the establishment of mammalian infection; 

however, the ability of spirochetes to cause infection by the needle inoculation route 

indicates that Salp15-binding is not the necessary function of OspC required to 

establish infection.  Another proposed OspC ligand is plasminogen.  In other bacterial 

species, plasminogen binding has been shown to be important in tissue penetration and 

dissemination (Lagal et al., 2006; Lahteenmaki et al., 1998; Lahteenmaki et al., 2001).  

OspC has been shown to bind plasminogen in vitro but the contribution of this 

interaction is not known due to the presence of other plasminogen-binding proteins 

expressed by the Borrelia (Brissette et al., 2009; Coleman et al., 1995; Grosskinsky et 

al., 2009; Hovis et al., 2008; Lagal et al., 2006; Rossmann et al., 2007; Seling et al., 

2009).  In order to decipher the function(s) of this protein in the absence of a ligand, a 

novel approach must be employed.    

1.4  Research Objectives 

  Several different portions of OspC have been theorized to play specific roles in 

this protein‟s many theoretical functions.  The OspC dimer has two solvent-accessible 

domains that potentially could interact with a ligand(s).  These domains have been 

denoted as ligand binding domain 1 (LBD1) and ligand binding domain 2 (LBD2) (Figure 

4C).  LBD1 is a pocket formed by the juxtaposition of alpha helix 1 and 1` of the two 
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opposing OspC monomers.  The residues that make up this domain are highly 

conserved in sequence with some being invariant.  LBD2 is located on the membrane 

distal „crown‟ of OspC and contains the portion of OspC that gives rise to the different 

phyletic types (Earnhart et al., 2010).  In contrast to LBD1, the residues that make up 

LBD2 are highly variable.  In addition to these two binding domains, other portions of 

OspC may also be important in its function.  A cysteine residue at position 130 (C130) 

may play a role in the formation of inter-dimeric bonds, forming higher order OspC 

oligomers on the bacterial cell surface.  Also the last ten amino acids (C10) of the C-

terminal end of OspC are highly conserved in sequence and have been theorized to be 

important in plasminogen binding and/or formation of important structural components, 

(Lagal et al., 2006; Mathiesen et al., 1998b).  Investigation of these different OspC 

domains and residues could help lead to a better understanding of the function of this 

critical Borrelia protein.           

In this dissertation, the role of OspC in the establishment of mammalian infection, 

host species specificity/association, and tissue dissemination were investigated through 

the creation of many different OspC mutant strains of B. burgdorferi.  The following 

regions of OspC and their role in OspC function investigated:   

(1) C130 – OspC harbors two cysteine residues, the N-terminal cysteine that 

helps tether the protein to the cell surface and a cysteine at position 130.  This 

residue was mutated to an alanine in order to assess the role of C130 in the 

formation of inter-dimeric bonds between OspC dimers on the cell surface, 

resulting in higher-order oligomers.  Additionally, the in vivo significance of 

oligomer formation was assessed by infectivity and dissemination studies.    
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(2) C10 – The last ten amino acids of OspC are highly conserved and have been 

hypothesized to have a variety of functions.  A mutant strain of B. burgdorferi was 

created in which these residues have been deleted.  This strain was used to 

assess the role of these C-terminal residues in plasminogen binding, infectivity, 

and host immune response to B. burgdorferi infection.                                         

(3) LBD1 – The high level of conservation of residues within LBD1 indicate that 

this region of OspC may play a role in the function of OspC that is necessary for 

infection establishment.  Specific residues within LBD1 were chosen for site-

directed mutagenesis in order to assess the role of this region of OspC in the 

ability of the spirochetes to establish a mammalian infection.      

(4) LBD2 – The most amino acid variability of OspC occurs in the LBD2 region.    

This variability results in marked differences in electrostatic surface charge.    

Specific residues within LBD2 were chosen for site-directed mutagenesis in order 

to produce a more positive or negative charge on the LBD2 surface.  The role of 

surface charge on this portion of OspC in dissemination and spirochete 

persistence was assessed.      

(5) OspC type – Strains of Borrelia that express different OspC types also 

contain other differences in their genome.  In order to assess the role of OspC 

type alone, whole ospC genes of different types were inserted into the same 

genetic background.  These mutants were then used to assess the role of OspC 

type in host species association and infectivity.   
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(6) OspC type A/PKo hybrids – OspC types A (from B. burgdorferi B31-5A4) 

and PKo (from B. afzelii PKo) are expressed by strains that have been shown to 

have differing host species specificity.  B. burgdorferi mutants were generated 

that express hybrids of OspC types A and PKo in order to assess the role of 

different regions of OspC in host specificity.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23



www.manaraa.com

 

 

 

Chapter 2:  Methods and Materials 

 

2.1  Borrelia strains and nomenclature   

All strains were cultured in Barbour-Stoener-Kelley (BSK) media supplemented 

with 6% rabbit serum in a 37°C incubator with 5%CO2  (Table 1).  Mutants generated for 

this study were named with a common nomenclature that includes: (1) the name of the 

parental strain (for all mutants in this document, the parental strain was B. burgdorferi 

strain B31-5A4) (2) the gene targeted for mutagenesis and/or allelic exchange (in all 

cases this gene was ospC), and (3) the amino acid, position, and substitution, OspC 

type, or OspC hybrid chosen for allelic exchange (Table 2).         

2.2  Site-directed mutagenesis of ospC 

 Site-directed mutations were introduced into the type A-ospC gene derived from 

B. burgdorferi B31-5A4 by overlap extension using mutagenic primers (Table 3) as 

previously described (Hovis et al., 2008).  The following mutants were generated using 

this method:  B31::ospC (E61Q/E63Q), B31::ospC (E61Q), B31::ospC (E63Q), 

B31::ospC (K60Y), B31::ospC (C130A), B31::ospC (N85G/D88N/E90Q), and B31::ospC 

(H82D/N84D/N92D).  Polymerase chain reaction (PCR) was used to amplify the type A-

ospC gene with the introduced amino acid change(s) using the mutagenic primers in  
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Table 1.  Description of Borrelia isolates and strains 
 
Species/Isolate   Source   Geographic Origin 
B. burgdorferi 
 B31MI  (clone 5A4)  Ixodes scapularis  New York 
 DRI-83a   Dog skin   Rhode Island  
 DRI-40g   Dog skin   Rhode Island 
 LDS79   Human serum  Baltimore, MD 
 Veery    Veery bird   Connecticut 
B. garinii 
 PBi    Human CSF   Germany 
B. afzelii 
 PKo    Human Skin   Germany  
B. andersonii 
 MOD-1   Ixodes dentatus  Bollinger County, MO 
 MOK-3a   Ixodes dentatus  Bollinger County, MO 
 MOS-1b   Ixodes dentatus  Stodderd County, MO 
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Table 2.  Description of B. burgdorferi allelic exchange mutants   
 
       Missing 
Allelic Exchange Mutant  Vector  Plasmids  Parental Strain    

B31ospC     pCR2.1    B31-5A4 

B31ospC kanR   pCAEV3    B31-5A4 
B31::ospC (wt)   pCAEV1 U   B31-5A4 
B31::ospC (C130A)   pCAEV1    B31-5A4 
B31::ospC (K60Y)   pCAEV1 U   B31-5A4 
B31::ospC (E61Q/E63Q)  pCAEV1 U   B31-5A4 
B31::ospC (E61Q)   pCAEV1    B31-5A4 
B31::ospC (E63Q)   pCAEV1    B31-5A4 
B31::ospC (type E)   pCAEV1 U   B31-5A4 
B31::ospC (type F)   pCAEV3    B31-5A4 
B31::ospC (type H)   pCAEV1    B31-5A4 
B31::ospC (type M)   pCAEV3    B31-5A4 
B31::ospC (type PBi)  pCAEV1    B31-5A4 
B31::ospC (type PKo)  pCAEV1 T   B31-5A4  
B31::ospC (type MOD1)  pCAEV1 T   B31ΔospC kanr 
B31::ospC (type MOK3a)  pCAEV1    B31ΔospC kanr  
B31::ospC (type MOS1b)  pCAEV1    B31ΔospC kanr 
B31::ospC (H82D/N84D/N92D) pCAEV1    B31-5A4 
B31::ospC (N85G/D88N/E90Q) pCAEV1    B31-5A4 
B31::ospC (hybrid Aap)  pCAEV1    B31-5A4 
B31::ospC (hybrid Apa)  pCAEV1 U   B31-5A4 
B31::ospC (hybrid App)  pCAEV1    B31ΔospC kanr 
B31::ospC (hybrid Paa)  pCAEV1    B31-5A4   
B31::ospC (hybrid Pap)  pCAEV1 C, U   B31ΔospC kanr 
B31::ospC (hybrid Ppa)  pCAEV1  U   B31ΔospC kanr 

B31::ospC (200)   pCAEV1 U   B31-5A4 
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conjunction with full length ospC primers (OspC LIC +/-) at a final concentration of 0.75 

pmol L-1.  These reactions were run using 10 ng of B31-5A4 genomic DNA (isolation 

described below) as template and Phusion Master Mix HF (Finnzymes) in 30 L 

reactions in a MJ Research PTC-100 thermal cycler with the following conditions: 1 

cycle of 98°C for 30 sec followed by 34 cycles of 98°C for 5 sec, 61°C for 10 sec, 72°C 

for 30 sec, and finally 1 cycle of 72°C for 4 minutes with a indefinite 4°C hold.  The 

products from these reactions were then used as template for another round of PCR in 

60 L reactions using Phusion Master Mix HF and full length OspC LIC +/- ospC 

primers following the same parameters and conditions described above.     

2.3  Ligase-independent cloning and sequencing of site-directed mutants 

Site-directed mutant ospC genes were PCR amplified as described above.  For 

the introduction of different ospC types into the B31-5A4 type A-ospC background, the 

desired types were PCR amplified from genomic DNA using full length gene primers 

corresponding to the correct sequence of the different types (Table 3).  The following 

OspC types were chosen for allelic exchange into B31-5A4:  (types A (from strain B. 

burgdorferi B31-5A4), E (B. burgdorferi DRI83a), F (B. burgdorferi DRI40g), H (B. 

burgdorferi LDS79), M (B. burgdorferi Veery), PKo (B. afzelii PKo), PBi (B. garinii PBi), 

MOD-1 (B. andersonii MOD-1), MOK-3a (B. andersonii MOK-3a), and MOS-1b (B. 

andersonii MOS-1b) (Table 2).  Hybrid genes of OspC types A and PKo were 

synthesized by an independent company (GenScript).  After PCR amplification, the full 

reactions were run out on a 1% GTG agarose gel and visualized with ethidium bromide.    

The bands corresponding to the size of ospC were excised from the gel and the PCR 

products purified using a Quiagen Gel Extraction kit.  The ospC types, ospC hybrids,  
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Table 3.  Oligonucleotide primers 
 
Primer Description Sequence 

pCAEV1 Upstream (+) pCAEV1 vector 
construction 

CAGAATGAGTTACTTCTGGATGG 

pCAEV1 OspC 5' (-) 
BspEI/MluI 

pCAEV1 vector 
construction 

GTACGCGTTTTTCCGGAATTATTACAAGAT
ATAAATA 

pCAEV1 OspC 3' (+) BspEI pCAEV1 vector 
construction 

TCCGGATCAATATTATAAGATTAATTTGTTT
TAAA 

pCAEV1 BBB21 3' (-) AatII pCAEV1 vector 
construction 

GACGTCATCTCACATAAAACCAAAGAAACT
AC 

Spec/Strep (+) SalI pCAEV1 vector 
construction 

GTCGACTAATACCCGAGCTTCAAGGA 

Spec/Strep (-) AatII pCAEV1 vector 
construction 

GACGTCATTATTTGCCGACTACCTTGG 

pCAEV1 Downstream (+) 
SalI 

pCAEV1 vector 
construction 

GTCGACTTTAAAAAGTTGTTAAATAGACTT
AACTAT 

pCAEV1 Downstream (-) 
MluI 

pCAEV1 vector 
construction 

ACGCGTGGATATATGCAATCTTTAGTCCA
G 

flaB-GFP (+) XhoI pCAEV3 vector 
construction 

CTCGAGCCGGAGGAGTTATTTATAATAAAA
TAAAGAATTAC 

flaB-GFP (-) XhoI pCAEV3 vector 
construction 

CTCGAGGTGGCGGCCGCTCTAG 

Insert type A, F, M (+) BspEI Amplification of insert TCCGGAAAAGATGGGAATACATCTGCA 
Insert type E, H (+) BspEI Amplification of insert TCCGGAAAAGATGGGAATGCATCTGCA 
Insert PKo (+) BspEI Amplification of insert TCCGGAAAAGGTGGGGATTCTGCA 
Insert PBi (+) BspEI Amplification of insert TCCGGAGGGGATTCTGCATCTACTAATC 
Insert type A, E, F, H, M, 
PKo, PBi (-) BspEI 

Amplification of insert TCCGGATTAAGGTTTTTTTGGACTTTCTG 

Upstream confirm (+) Transformation 
confirmation 

CCTACGTTGTGATGAGACTTGATTT 

Spec/strep 3' (+) Transformation 
confirmation 

GGCGAGATCACCAAGGTAGTC 

Insert sequencing (+) OspC sequence 
confirmation 

TAAAAAGGAGGCACAAATTAATG 

Deletion upstream (+) Deletion vector 
construction 

GCAACAATCCAGTGTTTACAAAAACG 
 

Deletion upstream (-) Deletion vector 
construction 

ACCGGTTCTGACGTCTAATTTGTGCCTCCT
TTTTATTTATGA 

Deletion downstream (+) Deletion vector 
construction 

GACGTCGTTGTGGCAGAAAGTCCAAAAAA
ACC 

Deletion downstream (-) Deletion vector 
construction 

ACCGGTGCTGTTTAACGATTTATTTGATAC
TTTGGGC 

OspC (+) LIC Amplification of OspC 
for pET46 

GACGACGACAAGATTAATAATTCAGGGAA
AGATGGG 

OspC (-) LIC Amplification of OspC 
for pET46 

GAGGAGAAGCCCGGTTTAAGGTTTTTTTG
GACTTTCTGC 

OspC E61Q/E63Q (+) Mutagenic primer GTGAAACAGGTTCAAGCGTTG 
OspC E61Q/E63Q (-) Mutagenic primer CAACGCTTGAACCTGTTTCAC 
OspC K60Y (+) Mutagenic primer CAACGCTTCAACCTCATACAC 
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OspC K60Y (-) Mutagenic primer GTGTATGAGGTTGAAGCGTTG 
OspC E61Q (+) Mutagenic primer GTGAAACAGGTTGAAGCGTTG 
OspC E61Q (-) Mutagenic primer CAACGCTTCAACCTGTTTCAC 
OspC E63Q (+) Mutagenic primer GTGAAAGAGGTTCAAGCGTTG 
OspC E63Q (-) Mutagenic primer CAACGCTTGAACCTCTTTCAC 
OspC C130A (+) Mutagenic primer GCGGCTAAGAAAGCTTCTGAAAC 
OspC C130 (-) Mutagenic primer GTTTCAGAAGCTTTCTTAGCCGC 
OspC N85G/D88N/E90Q (+) Mutagenic primer ATACACCAAAATGGTGGTTTGAATACCCAA

AATAATCAC 
OspC N85G/D88N/E90Q (-) Mutagenic primer GTGATTATTTTGGGTATTCAAACCACCATT

TTGGTGTAT 
OspC H82D/N84D/N92D (+) Mutagenic primer GCTAAAGCTATTGGTAAAAAAAGAGATCAA

GATAATGGTTTGGATACCGAAAATGATCAC 
OspC H82D/N84D/N92D (-) Mutagenic primer GTGATCATTTTCGGTATCCAAACCATTATC

TTGATCTCTTTTTTTACCAATAGCTTTAGC 
FlaB q-PCR primer (+) q-PCR primer CAGGTAACGGCACATATTCAGATGC 
FlaB q-PCR primer (-) q-PCR primer CTTGGTTTGCTCCAACATGAACTC 
Nid1 q-PCR primer (+) q-PCR primer CCAGCCACAGAATACCATCC 
Nid1 q-PCR primer (-) q-PCR primer GGACATACTCTGCTGCCATC 
OspC 20 (+) LIC Amplification of ospC 

for pET vectors 
GACGACGACAAGATTAATAATTCAGGGAA
AGATGGG 

OspC 210 (-) LIC Amplification of ospC 
for pET vectors 

GAGGAGAAGCCCGGTTTAAGGTTTTTTTG
GACTTTCTGC 

OspC 200 (+) LIC  Amplification of ospC 
for pET vectors 

GACGACGACAAGATTCCTGTTGTGGCAGA
AAGTCC 

OspC 200 (-) LIC Amplification of ospC 
for pET vectors 

GAGGAGAAGCCCGGTTTAGCTTGTAAGCT
CTTTAACTGAATT 

Insert type A 20 (+) BspEI Amplification pCAEV1 
insert 

TCCGGAAAAGATGGGAATACATCTGCA 

Insert type A 200 (-) BspEI
  

Amplification pCAEV1 
insert 

TCCGGATTAGCTTGTAAGCTCTTTAACTGA
ATTAG 
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and site-directed mutant genes were then prepared for and annealed into the pET46 

Ek/LIC vector.  To accomplish this, the purified PCR products from above were first 

treated with T4 DNA polymerase to generate single-stranded overhangs and then 

annealed into the pET46 vector.  The resulting plasmids were then transformed into 

both Novablue and BL21 (DE3) strains of E. coli.  Colonies were selected for ampicillin 

resistance (50 g mL-1) and PCR with the OspC LIC +/- primer set was used to screen 

the colonies for the presence of ospC.  These PCR reactions were carried out using 

GoTaq Master Mix (Promega) in 30 L reactions and the following PCR conditions:    1 

cycle of 95°C for 2 min followed by 34 cycles of 94°C for 15 sec, 50°C for 30 sec, 72°C 

for 1 min, and finally 1 cycle of 72°C for 4 minutes with a indefinite 4°C hold.  Several 

colonies containing ospC were used to start 6 mL cultures in LB broth with ampicillin (50 

g mL-1) and allowed to grown over night in a shaking 37°C incubator.  The plasmids 

were then isolated from the E. coli using a HiSpeed Plasmid Mini kit (Qiagen).  All 

procedures were performed as directed by the manufacturer (Novagen).  The resulting 

constructs were validated by automated DNA sequencing (MWG Biotech or GENEWIZ).    

2.4  Generation of allelic exchange vectors 

A master allelic-exchange vector designated as pCAEV1 was generated using a 

pCR2.1 backbone (Figure 6A).  A second allelic exchange vector called pCAEV3 was 

constructed that is identical to pCAEV1 with the addition of the gene for production of 

green fluorescent protein (gfp) (Figure 6B).  To create pCAEV1 the following regions of 

B. burgdorferi B31-5A4 cp26 were amplified: (1) region 5' of ospC (includes BbB18 and 

extends through the signal sequence and first four amino acids of OspC; the amplicon 

harbors 3' tandem BspEI and MluI sites), (2) region 3' of ospC (includes BbB20 and  
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Figure 6.  Schematic of allelic exchange vectors.  The (A) pCAEV1 and (B) pCAEV3 

vectors were generated as described in the text.  Restriction sites necessary for 

creation are shown.   
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BbB21 and flanking sequences; amplicon harbors 5' BspEI and 3' AatII sites) and (3)  

region 3' of BbB21 (includes a portion of BbB22; amplicon harbors 5' SalI and 3' MluI 

sites).    To allow for streptomycin/spectinomycin resistance selection, aadA was 

amplified from pKFSS1 using primers with 5' SalI and 3' AatII sites (Frank et al., 2003) 

(Table 3).    All amplicons were individually annealed into the pCR2.1 TOPO plasmid 

and the plasmids were propagated in and isolated from Novablue E. coli as described 

above.  The plasmids were digested with the appropriate restriction enzymes to release 

the inserts.  The inserts were ligated into the plasmid carrying the 5' ospC-containing 

fragment in the pCR2.1 TOPO vector and transformed into E. coli (C2925; New England 

Biolabs).  The pCAEV3 vector was created by amplifying the constitutively active gfp 

gene from pCE323 and ligating it 5` of the streptinomycin resistance cassette in pCAEV1 

(Eggers et al., 2006).      

2.5  Allelic-exchange replacement of wild type ospC 

To create the ospC allelic-exchange vectors, wild-type, ospC types, ospC 

hybrids, and ospC genes with site-directed mutations (generated as detailed above) 

were amplified with primers possessing 5' and 3' BspEI sites (Table 3).  The amplicons 

were cut with the appropriate restriction enzyme and ligated into pCAEV1 or pCAEV3.    

The plasmids were propagated in Novablue E. coli cells (Novagen) and purified using 

HiSpeed Plasmid Midi kits (Qiagen).  All mutant strains of B. burgdorferi were made 

using pCAEV1 with the exception of the B31-5A4 mutants containing OspC types F and 

M, which were created using pCAEV3.      

2.6  Transformation of B. burgdorferi 
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 The plasmids generated as described above were introduced into B. burgdorferi 

B31-5A4 (kindly provided by Dr. Jon Skare) or B31ΔospC kanr (described below) by 

electroporation essentially as previously described with some modifications (Samuels 

and Garon, 1993; Samuels et al., 1994).  B. burgdorferi B31-5A4 and B31ΔospC kanr 

cultures were grown at 37°C to mid-log phase in BSK-H medium with 6% rabbit serum 

(Sigma).    The cells were collected by a series of centrifugation steps.  All 

centrifugations were performed at 4°C and the cultures were always kept on ice.  The 

cultures were spun at 4,000 x g for 20 min, washed with 10 mL of cold Dulbecco‟s PBS 

(dPBS), spun at 3,000 x g for 10 min, washed with 10 mL of cold EPS buffer (93 g L-1 

sucrose, 15% glycerol), spun at 2,000 x g for 10 minutes, washed with 10 mL of cold 

EPS buffer, and finally spun again at 2,000 x g and resuspended in 150 L of cold EPS.  

The pCAEV1/3 plasmids containing the mutant ospC gene were linearized using MscI 

or PflFI and ScaI-HF (New England Biolabs).  A small amount each reaction was run on 

a 1% agarose gel to ensure correct cutting.  The linearized plasmids were purified 

through two rounds of phenol/chloroform/isoamyl alcohol (25:24:1) (Fisher Scientific), 

precipitated with ice cold absolute ethanol, washed with 70% isopropanol, allowed to 

dry, resuspended in 6 L of mili-Q water, and quantified using UV spectrophotometery.    

Twenty g of linearized plasmid was then mixed with 50 L of the cell suspension.    

After 5 min on ice, the cells were electroporated (0.2 cm cuvette, 2.5 kV, 25 FD, 200 

Ω), transferred to 10 mL BSK medium with 6% rabbit serum, and incubated overnight at 

37°C (5%CO2).  The culture volumes were increased to 50 mL with fresh BSK media, 

streptomycin (50 g mL-1) was added, and the cultures were maintained at 37°C for 2 to 

4 weeks.     
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2.7  Subsurface plating of B. burgdorferi 

Clonal populations of all transgenic strains were obtained by subsurface plating.    

Briefly, 2% GTG agarose was autoclaved and placed in a 55°C water bath while BSK 

media supplemented with 6% rabbit serum was placed in a 45°C water bath.  The 

bottom layers of plates were poured first with a final agarose concentration of 0.6%.    

Three serial dilutions of the transformant cultures were prepared and mixed with the top 

layer of the plates (final agarose concentration of 0.8%).  The top layers were poured 

over the bottom layers and the plates were allowed to cool and solidify before being 

placed in sterile bags and incubated at 37°C (5%CO2) for 2-4 weeks until colonies 

became visible.  Clonal colonies were punched from plates using sterile pipettes, placed 

in 2 mL of BSK-H media, and allowed to grow until dense.  One mL of each clonal 

culture was spun down (14,000 x g, 10 min) and cell pellets were resuspended in 40 mL 

of mili-Q water.  These pellets were boiled and used as template for PCR to determine 

the plasmid contents of the transformants using plasmid-specific primer sets (McDowell 

et al., 2001; Rogers et al., 2009).  Additionally, to confirm the sequence of the DNA that 

crossed over into cp26, the desired region was PCR amplified using Phusion Taq as 

described above and sequenced (MWG Biotech or GENEWIZ).   

2.8  Generation of B. burgdorferi B31ΔospC strr and B31ΔospC kanr strains  

A pΔospC strr knockout vector was created by amplification of the upstream 

(1000 bp) and downstream (1025 bp) regions of ospC with primers harboring 

appropriate restriction sites (Figure 7A).  The upstream amplicon contains tandem AatII 

and AgeI sites at its 3' end while the downstream amplicon has 5' AatII and 3' AgeI sites  
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Figure 7.  Schematic of ospC knock-out vectors.  The (A) pospC strr and (B) pospC 

kanr vectors were generated as described in the text.  Restriction sites are indicated.     
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(Table 3).  The amplicons were cloned into pCR2.1 and the plasmids were propagated 

in and isolated from Novablue E. coli as described above. The plasmids were digested 

with AatII and AgeI, and the downstream fragment was ligated to the upstream-

containing plasmid.  Finally, the aadA gene for streptomycin/spectinomycin resistance 

was excised from the pKFSS1-AatII plasmid (Frank et al., 2003) and ligated between 

the upstream and downstream sequences.  The pΔospC kanr was created by excising 

the aadA gene from pΔospC strr using AatII, digesting the PFligBaphIT7T kanamycin 

resistance gene (kindly provided by Dr. Scott Samuels) with AatII, and ligating the two 

together (Figure 7B).   Transformation, subsurface plating and plasmid screening were 

conducted as described above.     

2.9  Assessment of growth curves 

Either 10 or 15 mL tubes of BSK-H complete media were seeded with 

approximately 5 x 105 cells mL-1 of actively growing cells.    Cultures for determining 

LBD1 mutant growth curves were seeded lower than other transgenic strains.    

Triplicate cultures were maintained at 37°C (5% CO2) and cell counts were conducted 

each day using darkfield microscopy with an Olympus BX51 fluorescence microscope.    

2.10  Production of recombinant OspC proteins   

 For recombinant protein production, BL21 (DE3) cells were transformed with the 

pET46 Ek/LIC plasmids carrying wild type or mutated ospC genes as described above.    

The pET46 plasmid utilizes an IPTG-inducible promoter and contains an N-terminal His-

tag to allow for protein purification.    PCR was used to ensure that individual BL21 

(DE3) colonies contained ospC.    Once the correct insert was confirmed, protein was 
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induced and purified.    For protein induction, an individual colony was grown in 100 mL 

of LB broth containing ampicillin (50 g mL-1) in a 37°C shaking incubator.  Once the 

culture density reached an OD600 of between 0.5 and 0.8, protein expression was 

induced with IPTG (1 mM).    After incubating for an additional 3 hours, cells were 

collected by centrifugation (6,000 x g for 15 min), lysed using Bug Buster HT (Novagen), 

and proteins purified by nickel chromatography using His-Bind resin (Novagen).  The 

purified proteins were then dialyzed against three changes of PBS and quantified by the 

BCA assay (Pierce).     

2.11  Generation of anti-OspC antiserum 

To generate antiserum, C3H/HeJ mice were immunized with 10 µg of wild type 

recombinant OspC protein adsorbed to Imject alum (Pierce), with boosts at weeks 4 and 

6.    Serum was collected by tail bleed at weeks 5 and 7.    Mice were sacrificed at week 

12 and blood was collected.    The serum was tested by immunoblot and shown to be 

specific.    Week 7 blood had the greatest reactivity and was used in all analyses.      

2.12  OspC immunoblot 

To ensure that all mutant strains correctly produce OspC, Western blot analysis 

was utilized.  Cultures were cultivated at 27°C and then transferred to 37°C for 3 days to 

induce ospC expression.  The cells were then harvested by centrifugation (5,000 x g, 20 

min), washed twice with PBS, and the equivalent of 1 OD600 of culture was suspended 

in 150 L of reducing SDS-PAGE sample buffer (Laemmli and Favre, 1973).  The cells 

were then boiled and the cell lystates were subjected to SDS-PAGE using a 15% gel 

(Criterion, Bio-Rad) (200 volts, 1 hr) and were transferred to PVDF membranes 
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(Milipore) by electroblotting (100 volts, 1 hr).  The membranes were blocked (5% milk in 

PBS-T (PBS with 0.2% Tween 20)) for 1 hour before being screened with mouse-anti-

OspC (1:1,000).  Washes with PBS-T occurred between each incubation.  Antibody 

binding was detected using peroxidase-conjugated goat-anti-mouse IgG (1:40,000) and 

chemiluminescence (Supersignal West; Pierce).    

2.13  Proteinase K proteolysis    

To assess the presentation of OspC at the B. burgdorferi cell surface, strains 

were cultivated at 27°C and then transferred to 37°C for 3 days to upregulate ospC 

expression.  The cells were harvested (5,000 x g, 20 min), washed twice with dPBS, 

and the equivalent of 1 mL of culture at 0.3 or 0.2 OD600 was suspended in 1 mL of PBS 

with or without proteinase K (20 mg mL-1).  The cell suspensions were incubated at 

22°C for 1 hr before phenylmethylsulfonyl fluoride (PMSF) was added (0.5 mg mL-1 

methanol).  The cells were then harvested by centrifugation (14,000 x g, 10 min) and 

suspended in 120 µL of SDS-PAGE sample buffer.  The cell lysates (2 µL) were 

subjected to SDS-PAGE using 15% precast gels (Criterion, BioRad) and then 

transferred to PVDF membranes (Millipore) by electroblotting.  After being allowed to 

dry, the membranes were blocked using 5% milk in PBS-T (PBS with 0.2% Tween 20) 

for 1 hour before being screened with mouse-anti-OspC (1:20,000) or with mouse-anti-

FlaB (1:400,000).  Washes with PBS-T occurred between each incubation.  Antibody 

binding was detected as described above.     

2.14  Immunofluorescence assays (IFA)   
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The distribution of OspC on Borrelia cells was assessed by immunofluorescent 

microscopy.  Cells were collected by centrifugation (3,000 x g, 10 min), washed with 10 

mL of dPBS, spun again, and resuspended in 1 mL of dPBS.  The OD600 of the cells 

was determined and a 0.005 OD of each culture was suspended in 100 L of dPBS and 

immobilized on slides (Superfrost Plus; Fisher).  The slides were then blocked with 3% 

BSA in PBS-T for 1 hour in a humidified chamber, washed with PBS-T, and probed with 

mouse-anti-OspC antiserum (1:2,000) for 1 hour.  Alexafluor 488 or 568-conjugated 

rabbit-anti-mouse IgG (1:200) served as the secondary antibody.  The slides were 

mounted with Prolong Gold with DAPI (Invitrogen) and the cells visualized using an 

Olympus BX51 fluorescence microscope.   

2.15  Infectivity analyses 

2.15.1  Subcutaneous C3H/HeJ mouse inoculation  

To test infectivity of the different B. burgdorferi strains generated, C3H/HeJ mice 

were inoculated with 1x104 spirochetes of each strain by subcutaneous injection.  After 

four weeks, the mice were euthanized and the heart, tibiotarsal joint, ear, bladder and 

blood were harvested.  Blood was spun down (14,000 x g, 15 min) to collect the serum 

which was used for ELISA and Western blot analyses to assess the humoral response 

generated by the host (described below).  Portions of the ear and bladder biopsies or 

portions of all organs collected were placed in BSK medium (supplemented with 

rifampicin, fosfomycin, and amphotericin B) and incubated at 37°C under 5% CO2.    

Each sample was visually assessed for spirochetes by darkfield microscopy after 2 and 

4 weeks of incubation as a means of determining infectivity.   

41



www.manaraa.com

2.15.2  Intradermal C3H/HeJ mouse inoculation 

  In order to investigate the effects of site-directed mutation of LBD2 on 

dissemination, C3H/HeJ mice were inoculated intradermally with 1 x 104 spirochetes of 

strains B31::ospC (wt) and B31::ospC (N85G/D88N/E90Q).  The purpose of intradermal 

inoculation was to restrict the inoculum and avoid passive dissemination of spirochetes.    

Three mice were sacrificed 1, 3, 7, 14, and 21 days post-inoculation and blood, injection 

site skin, distal skin approximately one cm from the injection site, heart, tibiotarsal joint, 

ear and bladder tissues were collected.    Dissemination of spirochetes was assessed 

by organ culture and serum was assessed for humoral response as described above.         

2.16  DNA isolation 

2.16.1  Genomic DNA isolation from Borrelia 

 To isolate genomic DNA from B. burgdorferi cells, a 50 mL culture was grown to 

high density and the cells were collected by centrifugation (6,000 x g, 20 min) and 

washed twice with PBS.    The cells were resuspended in 1 mL of TES solution (50 mM 

Tris-HCl pH 8.  0, 40 mM EDTA, 25% sucrose) with 2% SDS and proteinase K (3 mg 

mL-1) and incubated at 37°C for 45 minutes to lyse the cells.  DNA was then extracted 

using an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) and spun down at 

room temperature (14,000 x g, 30 sec) to separate the layers.  The upper aqueous 

phase was transferred to a new 1.7 mL tube.  To the aqueous phase, 3 volumes of cold 

absolute ethanol and 1/10 volume of 7.5 M sodium acetate were added, mixed, and 

chilled overnight at -80°C.  The next day, the tubes were spun in a refrigerated 

centrifuge (14,000 x g, 15 min) to pellet the DNA and the ethanol was removed.  The 
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resulting DNA pellets were then washed twice with 500 L of 70% ethanol and allowed 

to air dry before being resuspended in 750 L of TE solution (10 mM Tris-HCl pH 8.0, 1 

mM EDTA) and treated with RNase (0.03 mg mL-1), SDS (1%), and proteinase K (0.3 

mg mL-1).  After incubating for 30 minutes at 37°C, the DNA was again extracted with 

phenol/chloroform/isoamyl alcohol (25:24:1), precipitated with absolute ethanol, and 

allowed to chill overnight as described above.  The pellets were then spun down 

(14,000 x g, 10 min, 4°C) and washed with 500 L of 70% ethanol three times before 

allowing the pellets to completely air dry.  The DNA was resuspended in 300 L of mili-

Q water and quantified using UV spectrophotometery.   

2.16.2  Total DNA isolation from animal tissues     

To isolate DNA from mouse tissues, approximately 0.5 g of each tissue or organ 

was digested with collagenase (2 mg mL-1) for 4 hours at 37°C and then with proteinase 

K (0.1 mg mL-1) over night at 55°C.  The samples were spun down to remove left over 

animal debris and the supernatant was transferred to a clean 1.7 mL tube.  DNA was 

extracted from the supernatant by treatment with an equal volume of 

phenol/chloroform/isoamyl alcohol (25:24:1) followed by centrifugation (14,000 x g, 30 

sec) and removal of the top aqueous phase to a clean tube.  This step was performed 

twice.  Next, the DNA was precipitated from the aqueous phase by using chilled 

absolute ethanol and 1/10 volume of sodium acetate and allowed to sit at -80°C for 30 

min.  The DNA was then spun down (14,000 x g, 10 min) and the pellet was washed 

with 70% ethanol twice, allowed to air dry, and resuspended in mili-Q water.  The 

concentration of DNA was quantified by UV spectrophotometery.   
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2.17  Quantitative PCR analysis  

Quantitative PCR (q-PCR) analysis was performed on LBD1 mutants (B31::ospC 

E61Q/E63Q, B31::ospC (E61Q), B31::ospC (E63Q), and B31::ospC (K60Y)) and the 

B31::ospC (C130A) mutant.  For q-PCR, the Borrelia flaB gene and the mouse nidogen 

1 (nid1) gene were amplified with Sybr Green PCR master mix (Applied Biosystems) 

using an Opticon 2 DNA engine (MJ Research).  PCR cycling conditions were: 94°C for 

10:00, 40 cycles of 94°C for 15 sec, 56°C for 30 sec, 72°C for 30 sec, with fluorescence 

reads following the extension cycle.  Relative numbers of gene copies were determined 

using a standard curve of Borrelia genomic DNA.  To determine the extent of non-

specific, background amplification, qPCR was also conducted using DNA extracted from 

the organs and tissues of uninfected mice.  All samples were run in three replicates of 

triplicates, and the organ-specific background amplification was subtracted from the 

mean ratios.  Statistical significance was assessed by ANOVA analysis of log-

transformed data, with post-hoc testing by the Holm-Sidak method (SigmaPlot).   

2.18  Enzyme-linked immunosorbant assay (ELISA)  

The humoral response to inoculation was assessed by whole cell ELISA and 

Western blot analyses.  For the ELISA analyses, B. burgdorferi B31-5A4 cells were 

pelleted, washed with PBS, suspended at 106 cells mL-1 (carbonate coating buffer) and 

immobilized onto ELISA plates (100 µL well-1; 4°C;  overnight) (Costar 3590).  The 

plates were blocked with 1% BSA in PBS-T blocking buffer for 2 hours at room 

temperature.  Serial dilutions of sera in blocking buffer were applied in duplicate and 

allowed to incubate for 1 hour.  Prior to application, sera were thoroughly mixed with a 
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vortex.  Antibody binding was detected using peroxidase-conjugated goat-anti-mouse 

IgG (1:20,000) and ABTS chromogen.  Titers were calculated as the inverse dilution 

corresponding to one third of the plateau optical density.   

2.19  Western blot  

For Western blot analyses of the host immune response, B. burgdorferi B31-5A4 

whole cell lysates were separated by SDS-PAGE (Criterion, Bio-Rad) and blotted to 

PVDF membranes.  The membranes were blocked with 5% nonfat dry milk in PBS-T 

and screened with mouse serum (1:1000) for 1 hour at room temperature.  Antibody 

binding was detected using peroxidase-conjugated goat-anti-mouse IgG (1:40,000) and 

chemiluminescence (SuperSignal West Pico; Pierce).    

2.20  Circular dichroism analysis of OspC  

Far-UV circular dichroism spectra of wild type and mutated recombinant OspC 

proteins were measured at 20°C in a Jasco J-715 spectropolarimeter (Jasco, Easton, 

MD, USA) (Chen et al., 1974).  The protein samples (10 µM) were scanned in a 1 mm 

path-length cuvette using a 1 nm bandwidth, 8 sec response time, and a scan rate of 20 

nm/min.  Three independent scans were made of each protein.  Circular dichroism 

spectra were subtracted from background (buffer alone) and converted from circular 

dichroism intensity to molar ellipiticity (deg cm2 dmol-1).   

2.21  Blue-native PAGE  

To determine if the recombinant wild type, OspC site-directed mutant and OspC 

hybrid proteins undergo dimerization, 1 μg of each protein was equilibrated in BN-PAGE 
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loading buffer (15% glycerol, 50 mM Bistris pH 7.0) containing 0.02% Coomassie 

brilliant blue G-250 (CBB-G250), and electrophoresed in a Novex Bis/Tris NativePAGE 

gels 4-16% (Schagger et al., 1994).  The cathode buffer (50mM tricine, 15mM Bis/tris, 

pH 7.0) contained 0.002% CBB-G250 for the first half of the electrophoresis run (100 

volts).  Once the proteins entered the gel and ran approximately one third of the way 

down the gel, the cathode buffer containing 0.  002% CBB-G250 was removed and 

replaced with cathode buffer with no CBB-G250 and the gel was allowed to run to the 

end (200 volts).  The anode buffer was 50mM bis/tris pH 7.0.  To visualize proteins, the 

gel was stained using Coomassie Blue stain solution (R-250).  The molecular mass of 

the recombinant OspC proteins was interpolated from a standard curve generated with 

NativeMark (Invitrogen) marker mix.    

2.22  Plasminogen binding assay 

Plasminogen binding by recombinant OspC was assessed by ELISA (Lagal et 

al., 2006).  ELISA plates (Costar 3590) were coated with 500 ng plasminogen (P7999, 

Sigma) in carbonate buffer (pH 9.6).  The wells were blocked with 1% BSA in PBS-T for 

1 hour at room temperature.  Recombinant OspC proteins (1 μg well-1 in blocking buffer) 

were incubated in triplicate wells for two hours at room temperature.   Secondary 

detection of bound OspC was by mouse-anti-His-tag monoclonal antibody (1:1,000) 

(Pierce), then by peroxidase-conjugated goat-anti-mouse IgG.  Binding was quantified 

using ABTS chromogen.   

2.23  Structural modeling 
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 Electrostatic surface charge maps of the site-directed mutants B31::ospC 

(N85G/D88N/E90Q) and B31::ospC (H82D/N84D/N92D ) were created using Deep View 

Swiss PdbViewer 4.0.1.  The Poisson-Boltzman method was used and the color blue 

denotes positive charge while red signifies negative charge.  The prototypical OspC 

model used in all structural models in this thesis is a surface projection of the IGGQ 

OspC crystal structure (Kumaran et al., 2001b).  All plasmids maps were generated 

using BioEdit.       
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Chapter 3:  Results 

 

3.1  In vitro assessment of B. burgdorferi OspC transgenic strains  

3.1.1  Generation of mutant and control strains 

A master allelic-exchange construct (designated as pCAEV1) was generated 

(Earnhart et al., 2010) and ospC genes harboring amino acid substitutions, whole ospC 

genes of different types, and ospC type hybrids were inserted.  Selection was 

accomplished with a streptomycin resistance (strR) cassette downstream of the BbB21 

open reading frame.  In pCAEV1, the modified ospC genes are under the transcriptional 

control of a B. burgdorferi type A-ospC promoter (Alverson et al., 2003; Gilmore et al., 

2001; Marconi et al., 1993a; Xu et al., 2007; Yang et al., 2005).  The endogenous cp26-

encoded wild type-type A ospC gene of B. burgdorferi B31-5A4 was replaced with the 

mutated genes or with a wild type copy of ospC.  This strain, designated B31::ospC 

(wt), served as a control to verify that the general genetic manipulation procedures 

employed and the expression of the antibiotic resistance cassette did not alter the 

properties of B. burgdorferi B31-5A4 (detailed below).  As a negative control, the cp26-

carried wild type copy of ospC was deleted from B. burgdorferi B31-5A4 and replaced 

with a resistance marker using the pΔospC strr vector.  An additional ospC knockout, 

B31ospC kanr, was generated to expedite the generation of mutants.   
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3.1.2  Assessment of plasmid content of transformant strains 

 B. burgdorferi B31-5A4 retains a large number of circular and linear plasmids that 

are easily lost during transformation (Barbour, 1988; Casjens et al., 2000; Eggers and 

Samuels, 1999; Eggers et al., 2000; Fraser et al., 1997; McDowell et al., 2001; Persing 

et al., 1994; Schwan et al., 1988; Zhang and Marconi, 2005).  After obtaining clonal 

populations of each mutant or control, plasmid content was determined through PCR 

using plasmid specific primer sets (data not shown) (Rogers et al., 2009).  The full list of 

allelic exchange strains and the plasmids lost can be found in Table 3.  Sixteen of the 

26 strains created retained the full B31-5A4 plasmid repertoire.  The only plasmids lost 

by any of the strains are cp9, lp5, and lp21.  Strains B31::ospC (wt), B31::ospC (K60Y), 

B31::ospC (E61Q/E63Q), B31::ospC (type E), B31::ospC (hybrid Apa), B31::ospC 

(hybrid Ppa), and B31::ospC (C10) lost lp21 which has been shown to be is 

inconsequential as it is not required for infectivity (Purser and Norris, 2000).  Lp5, which 

is missing from strains B31::ospC (type PKo) and B31::ospC (type MOD-1), contains 

very few open reading frames, none of which encode genes necessary for infection 

establishment.  B31::ospC (hybrid Pap) is missing two plasmids, cp9 and lp21, neither 

of which had any effect on the ability of this strain to cause mammalian infection.   

3.1.3  Verification of sequence of the inserted ospC gene 

Generating B. burgdorferi mutants is a difficult process due to many factors 

including the slow growth rate of these organisms, how easily they lose plasmids, and 

their low frequency of transformation.  Additionally, during recombination, different 

portions of the ospC genes located on pCAEV1/3 can cross over with the type A-ospC 
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gene on cp26, making it difficult to introduce the exact changes desired.  In order to 

avoid this problem of incomplete crossover, the B31::ospC kanr mutant was developed.    

Using this mutant, the whole correct ospC gene was inserted into cp26.  Twenty of the 

mutants in this study were generated by transformation of B31-5A4 while six strains 

were created using the B31::ospC kanr mutant.  Following transformation and 

subsurface plating, the introduced copy of ospC was amplified from individual colonies 

and the amplicons were sequenced to ensure that the desired sequence changes 

occurred and that no other changes were introduced into the cp26 ospC gene.    No 

sequence alterations, other than those intended, were detected in any of the allelic 

exchange strains created.    

3.1.4  Assessment of mutant strain growth rates  

To ensure that the production of the mutant OspC proteins and the expression of 

the antibiotic resistance cassette have no effect on the growth rate of the allelic 

exchange strains, growth curves were determined by dark field microscopy.  None of 

the allelic exchange or ospC deletion mutants displayed a growth phenotype that 

differed from the parental B31-5A4 strain (Figure 8A-G).     

3.1.5  Verification of OspC production and surface exposure 

Western blot, proteinase K digestion, and indirect immunofluorescence assays 

(IFA) were used to demonstrate that all allelic exchange strains (except B31ΔospC) are 

able to export, present, and distribute OspC on the cell surface in a manner consistent 

with the parental B31 strain.  Cells were exposed (or not exposed) to proteinase K, 

which is known to cleave OspC from the outer membrane of Borrelia, and western blots  
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Figure 8.  Analysis of growth rate of OspC allelic exchange mutant strains.  The rate of 

growth of all mutants was determined by triplicate counts of each culture using dark field 

microscopy.  (A) C130A  (B) C10 (C) LBD1 mutants  (D) LBD2 mutants  (E) OspC type 

allelic exchange mutants  (F) OspC type allelic exchanges from B. andersonii (G) OspC 

A/PKo hybrids   
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Figure 9.  Analysis of OspC expression and presentation by allelic exchange strains.  

Anti-OspC western blot was used to show OspC expression and proteinase K digestion 

was used to show OspC cell surface presentation.  (A) C130A (B) C10 (C) LBD1 

mutants (D) LBD2 mutants (E) OspC type allelic exchange mutants  
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of the cell lysates were screened with anti-OspC or anti-FlaB antisera, generated 

against a periplasmic flagellar protein.  The western blot of the cells not treated with 

proteinase K show that all the mutant strains produce OspC (Figure 9A-F).  Although 

there appear to be differences in the expression levels of OspC between the allelic 

exchange mutants and B31-5A4, these differences are most likely due to the type-

specific nature of the immune response.  The immunoblots were screened using anti-

OspC antiserum generated against OspC type A.  This antiserum does not react 

optimally to the different OspC types used for allelic exchange, accounting for the 

differences in the band strengths.  Exposure to proteinase K resulted in the loss of 

detection of OspC, but not the periplasmic FlaB (Figure 9A-E).  Digestion with 

proteinase K showed that the allelic exchange mutants present OspC on the outer 

membrane.  Proteinase K analysis of the OspC type A/PKo hybrid strains is still 

ongoing.       

IFA analyses were used to assess the surface presentation and distribution of 

OspC on the outer membrane of the transgenic strains.  These analyses demonstrated 

no visible differences in surface labeling patterns between the allelic exchange mutants 

and B31-5A4 (Figure 10A-F).  Additionally, the distribution of OspC on the surface of 

these strains appears to be the same as B31-5A4.  For strains B31::ospC (type F) and 

B31::ospC (type M) an antibody tagged with red fluorescent protein was used due to the 

fact that these mutants were created using pCAEV3 and already produce green 

fluorescent protein.  Based on the western blot, proteinase K, and IFA analyses, it can 

be concluded that none of the ospC site-directed mutations, ospC type allelic 

exchanges, ospC hybrid genes or the genetic manipulation of these strains influence  
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Figure 10.  Analysis of OspC surface presentation and distribution by allelic exchange 

strains.  IFA analysis was used as described in the text.  (A) C130A  (B) C10  (C) 

LBD1 mutants  (D) LBD2 mutants  (E) OspC type allelic exchange mutants  (F) OspC 

A/PKo hybrids   
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the production, surface presentation, and distribution of OspC.  Additionally, deletion of 

C10 does not appear to alter OspC expression or outer membrane export (Kumru et al., 

2011).  In all of the above assays, no OspC signal was detected in the B31ΔospC strr or 

the B31ospC kanr strain.      

3.1.6  Assessment of dimerization ability of recombinant mutated OspC proteins 

by blue-native PAGE 

To determine if the LBD1 or LBD2 site-directed mutations influenced the ability of 

OspC to dimerize, blue-native PAGE (BN-PAGE) analyses were performed (Schagger 

et al., 1994) using recombinant protein.  BN-PAGE analysis was also conducted using 

recombinant C130A protein (r-OspC (C130A)) and will be discussed in greater detail 

below.   All site-directed mutant recombinant proteins efficiently dimerized and no 

residual monomer was detected (Figure 11 inset, and data not shown).  Collectively, 

these analyses indicate that the substitutions introduced into OspC did not significantly 

alter the secondary structure or ability of the mutant strains to dimerize.          

3.1.7  Determination of alpha helical content of recombinant mutated OspC 

proteins 

The possible effect of each substitution of the LBD1 mutations and C130A on 

OspC alpha helical content was directly assessed using circular dichroism 

spectroscopic analyses (Figure 11).  The estimated alpha helical content of the wild 

type OspC protein (57.5% ± 4%) was found to be in agreement with that determined by 

X-ray crystallography (~58%) (Eicken et al., 2001; Huang et al., 1999; Kumaran et al., 

2001b).  Estimated percent alpha helical content values are indicated in Figure 11.    
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Figure 11.  Blue-native PAGE and circular dichroism analysis of the LBD1 mutants.  

Circular dichroism analysis was used to analyse the helical content of the LBD1 

mutants.  BN-PAGE analysis (inset) demonstrated dimerization of all LBD1 mutants.   
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While the alpha helical content of E61Q decreased to some degree, the circular 

dichroism spectra of all other mutants were largely unaffected.     

3.2  OspC residue C130 plays a role in oligomerization 

3.2.1  Site-directed mutagenesis of B. burgdorferi OspC C130 and production of 

C130A mutant r-OspC 

Full length native OspC harbors two cysteine residues: an N-terminal tripalmitoyl 

glyceryl modified Cys and C130 (Figure 12A).  To determine if OspC dimers form 

disulfide bonds that mediate higher order oligomerization in vivo, B. burgdorferi B31 

ospC was replaced with ospC (C130A) by allelic exchange using the pCAEV1 vector.    

Recombinant OspC was generated that lacked the leader sequence and the N-terminal 

Cys residue.  In the native protein, the modification of the N-terminal Cys prevents it 

from playing a role in disulfide bond mediated oligomerization.  To determine if C130 is 

involved in OspC oligomerization, recombinant protein harboring a C130A substitution 

was generated.    

3.2.2  Assessment of oligomerization of OspC in vitro and in vivo 

To assess the formation of disulfide bonds, r-OspC proteins and cell lysates of 

each strain were analyzed by SDS-PAGE under reducing (β-mercaptoethanol) and non-

reducing conditions (Figure 13).  The monomeric native OspC and His-tagged r-OspC 

proteins have masses of 20.3 kDa and 22 kDa, respectively.  Under non-reducing 

conditions, r-OspC (wt) existed in both monomeric and dimeric form, while r-OspC 

(C130A) existed only in monomeric form (Figure 12B).  Under reducing conditions only 

monomers were detected (see conceptual model presented in Figure 12C-D).  Dimeric  
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Figure 12.  Location of residue C130 and conceptual model of OspC oligomers.  Figure 

12A shows the hydrophobically bound OspC dimer (with residue C130 shown), which is 

maintained under native conditions while in (B) the OspC monomer that is found under 

denaturing conditions is shown.  (C)  Two OspC dimers can be covalently linked by 

disulfide bonds formed between C130 residues.  Under denaturing conditions, the 

covalently bound OspC oligomers can be dissociated into monomers and covalently 

bound dimers (D).  These covalent dimers can only be dissociated into monomers 

under reducing conditions.           
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Figure 13.  SDS-PAGE analysis of OspC oligomers under non-native conditions.  

Recombinant wild-type (r-OspC(wt)) and C130A (r-OspC(C130A)) protein and Borrelia 

cell lysates were separated using SDS-PAGE under conditions to reduce disulfide 

bonds or nonreducing conditions, transferred to PVDF, and then probed with anti-OspC 

antisera.  The calculated molecular mass of the proteins are shown on the left.   
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OspC was also detected in B31 and B31::ospC (wt) cell lysates when separated under 

non-reducing conditions but not in the B31::ospC (C130A) cell lysate.    

To determine if r-OspC dimers can oligomerize, r-OspC (wt) and r-OspC (C130A) 

were separated under non-denaturing (both reducing and non-reducing) conditions 

using BN-PAGE.  Under non-reducing conditions five immunoreactive bands were 

detected, all with molecular masses consistent with OspC oligomers from single dimers 

to chains of 5 dimers (Figure 14).  Only dimers maintained by hydrophobic interactions 

were observed for the C130A protein.  Under reducing conditions all OspC was dimeric 

(Figure 14).   

3.2.3  Infectivity and dissemination of strains expressing wild-type or C130A 

OspC 

 The ability of each strain to establish infection in mice was assessed using 

needle inoculation in two trials (5 mice per group).  Four weeks post-inoculation, blood 

was collected and tissue biopsies of the heart, tibiotarsal joint, ear, and bladder were 

harvested and placed in media.  In the first infection trial, only ear and bladder tissues 

were placed in media for spirochete cultivation.  Serum was collected from the blood 

and used to determine the immune response mounted by the mice against the strains.    

Positive cultures were found in all mice, except those infected with the negative control 

B31ΔospC strain.  Cultivation of each infectious strain from mouse tissues did not 

reveal differences in dissemination patterns among strains (Table 4).     

To assess the antibody response elicited by each strain (i.e., seroconversion), 

anti-OspC and anti-B. burgdorferi IgG titers were determined by ELISA using r-OspC or  
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Figure 14.  BN-PAGE analysis of OspC oligomers under native conditions.  

Recombinant wild-type (r-OspC(wt)) and C130A (r-OspC(C130A)) protein were 

separated by blue native PAGE under reducing and nonreducing conditions, blotted to 

PVDF, and probed using anti-OspC antiserum.  Calculated molecular masses are 

shown to the left. 
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Table 4. Summary of culture results from tissues of mice inoculated with B31, ospC 
transgenic control strains, and B31::ospC (C130A). 
 
      #Infected/Total 
 
    Ear    Bladder Brain Heart Joint Kidney 
B31 (untransformed) 10/10    10/10 1/5 3/5 1/5 1/5  
B31::ospC (wt)  10/10    9/10  0/5 5/5 3/5 0/5   
B31::ospC (C130A)  5/10    10/10 0/5 4/5 2/5 0/5 
B31ΔospC   0/10    0/10  0/5 0/5 0/5 0/5 
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B. burgdorferi whole cells as the immobilized antigen.  Whole cell and OspC-specific 

IgG titers were similar for mice infected with B31, B31::ospC (wt) and B31::ospC 

(C130A) cells (Figure 15).      

3.3  The highly conserved C-terminal domain of B. burgdorferi OspC is not 

required for OspC function in the mouse model 

3.3.1  Deletion of the C-terminal domain of OspC and generation of recombinant 

protein 

The final ten amino acids (PVVAESPKKP) of OspC are highly conserved and 

have been theorized to have multiple functions.  In order to investigate the potential 

functional roles and antigenicity of the conserved OspC C-terminus, ospC was replaced 

in its native location with ospC lacking the C-terminal ten amino acids (C10) using the 

pCAEV1 vector.  Recombinant protein lacking the C10 amino acids was also generated.        

3.3.2  Analysis of plasminogen binding by the B31::ospC (C10) strain 

It has been hypothesized that conservation in the C10 sequence is due to a 

functional constraint on sequence variation.  Several functions for this domain have 

been proposed.   Lagal et al.   (2006) hypothesized that the C-terminal lysine residues 

of OspC are involved in binding plasminogen, which could aid in spirochete 

dissemination by proteolysis of extracellular matrix proteins.  In this study, a small 

decrease in plasminogen binding by r-OspC (ΔC10) was noted when compared with 

wild-type (Figure 16); however, it is clear that C10 is not required for plasminogen 

binding.   
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Figure 15.  Immune response of mice inoculated with B31::ospC (C130A).  ELISAs 

were conducted using serum collected from mice four weeks post-inoculation.  The 

infecting strain is indicated along the x axis.  The bars show the geometric mean 

antibody titer while the triangles represent each individual mouse.  The sera were 

serially diluted, screened against whole B. burgdorferi 5A4 cells immobilized on ELISA 

plates, and calculated as the inverse dilution corresponding to one-third of the plateau 

optical density.    
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Figure 16.  Ability of B31::ospC (C10) to bind human plasminogen.  Human 

plasminogen was immobilized in ELISA plate wells and screened with His-tagged r-

OspC (wt) or r-OspC (ΔC10), with bound OspC detected by mouse anti-His-tag 

antibody and peroxidase-conjugated goat-anti-mouse IgG. 
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3.3.3  Assessment of infectivity of B31::ospC (ΔC10) in mice 

Mathiesen et al. (1998b) suggested that C10 adopts a polyproline II helical 

conformation – a secondary structure associated with protein-protein interactions and 

bacterial adhesins (Brady et al., 2010).  C10 also has sequence similarity with the 

consensus recognition sequence for src homology domain 3 (SH3) proteins, which is a 

potential bacterial virulence mechanism (Aitio et al., 2010; Ren et al., 1993).  The 

potential effect of disruption of these interactions on infection establishment was 

necessarily accomplished by assessing the functional significance of the C10 domain 

during infection.  C3H/HeJ mice (n=5 per strain) were inoculated with control or 

transgenic strains.  After four weeks organs were harvested and used to assess 

infectivity.  Spirochetes were recovered from all mice infected with B31, B31::ospC (wt) 

and B31::ospC (ΔC10) strains (Table 5).  The negative control B31ΔospC strain was 

non-infectious.  Furthermore, there were no significant differences in induced anti-whole 

Borrelia cell or anti-OspC IgG titers between the three infectious strains (Figure 17).  

Thus, by this route of infection, the C10 domain is not required for OspC function.     

3.4  OspC LBD1 plays a crucial role in the ability of B. burgdorferi to establish 

mammalian infection 

3.4.1  Site-directed mutagenesis of LBD1 of OspC of B. burgdorferi B31-5A4  

To test the hypothesis that residues within LBD1 are involved in the in vivo 

functional activities of OspC that are required for the establishment of infection in 

mammals, residues K60, E61 and E63, which are charged, highly conserved, and 

possess side chains that extend into the solvent accessible pocket of LBD1, were  
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Table 5.  Summary of culture results from tissues of mice inoculated with B31, ospC 

transgenic control strains, and B31::ospC (C10).  
 
    #Infected/Total 
 
    Ear Bladder 
B31 (untransformed) 4/5 5/5 
B31::ospC (wt)  5/5 5/5 
B31::ospC (ΔC10)  3/5 5/5 
B31ΔospC   0/5 0/5 
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Figure 17.  Analysis of the specific IgG titer of mice infected with B31::ospC (C10). 

Serum was harvested from mice four weeks after needle inoculation. The sera were 

serially diluted and screened against immobilized whole B. burgdorferi cells, r-OspC 

(wt), r-OspC (ΔC10), or r-C10 peptide. Titers (indicated by triangles) were calculated as 

the inverse dilution corresponding to one third of the plateau optical density. Geometric 

mean titers are indicated by the bar.                           
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targeted for site-directed mutagenesis (Figure 18).  These residues may serve as ligand 

contact points or be important in defining the physiochemical properties of LBD1 

required for ligand binding.  Residues E61 and E63, which are negatively charged and 

hydrophilic, and the positively charged and hydrophilic residue, K60, were replaced with 

Q and Y residues (polar and hydrophilic), respectively.  These changes were chosen 

based on the reasoning that these substitutions would alter charge distribution, a key 

parameter in ligand binding, without significantly affecting secondary structure.  The 

master allelic-exchange construct pCAEV1 was used to create B. burgdorferi strains 

containing these site-directed mutations to OspC.  Additionally, recombinant OspC 

proteins harboring these mutations were generated.   

3.4.2  Analysis of the infectivity of isogenic strains expressing LBD1 site-directed 

mutations of OspC 

To determine if the production of mutated OspC proteins affects the ability of 

each strain to infect and disseminate, recombinant strains were administered to mice 

using needle inoculation (n=5 mice per group).  Ear punch biopsies and urinary 

bladders were obtained 4 weeks after inoculation.  Positive cultures were obtained from 

all mice infected with B31-5A4 (untransformed control), B31::ospC (wt), B31::ospC 

(E63Q) and B31::ospC (K60Y) (Table 6).  In contrast, none of the mice injected with 

B31ΔospC, B31::ospC (E61Q/E63Q) or B31::ospC (E61Q) yielded positive cultures 

(Table 6).  Since the sole genetic difference in strain B31::ospC (E61Q) relative to the 

wild type parental strain was a single amino acid substitution, it can be concluded that 

E61 is a critical determinant of OspC function in mammals.   
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Figure 18.  Location of residues chosen for LBD1 site-directed mutagenesis.  A ribbon 

diagram and surface projection of OspC is used to show the location of the residues 

within LBD1 chosen for site-directed mutagenesis.  The region containing LBD1 is 

highlighted by a yellow box and magnified in the right half of the figure to show the 

spatial location of these residues.  Residue K60 is shown in red, E61 in blue, and E63 in 

green.      
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Table 6. Summary of culture results from tissues of mice inoculated with B31, ospC 
transgenic control strains, and LBD1 site-directed mutants of OspC. 
 

#Infected/Total 
         

     Ear Bladder 
B31-5A4 (not transformed)  5/5 5/5 
B31::ospC (wt)   5/5 5/5 
B31ospCΔ     0/5 0/5 
B31::ospC (K60Y)   4/5 5/5 
B31::ospC (E61Q/E63Q)  0/5 0/5 
B31::ospC (E61Q)   0/5 0/5 
B31::ospC (E63Q)   5/5 5/5 
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3.4.3  Analysis of the immune response to strains expressing LBD1 site-directed 

mutations of OspC 

To determine if the inoculated mice developed a significant IgG response to B. 

burgdorferi, anti-B. burgdorferi IgG titers were determined by ELISA.  Immobilized B31-

5A4 whole cells served as the test antigen.  All strains that were infectious, based on 

the cultivation results, displayed high level IgG titers whereas strains that yielded 

negative cultivation results had low titers (Figure 19A).  The low titer antibody response 

observed in these strains most likely reflects a response to the inoculum (1x104 cells).    

Immunoblot analyses yielded results consistent with the ELISAs (Figure 19B).  Sera 

from all infected mice reacted strongly with multiple B. burgdorferi proteins while no 

significant reactivity of the sera derived from cultivation negative mice was observed.    

The ELISA and immunoblot results are consistent with the infectivity data and serve to 

further establish that specific site-directed substitutions within LBD1 result in a non-

infectious phenotype.    

3.4.4  Quantitative PCR (q-PCR) analysis of the dissemination of infectious strains 

expressing LBD1 site-directed OspC mutations  

To assess the influence of site-directed substitutions within LBD1 on 

dissemination, spirochete burdens in tissues and organs of all infected mice were 

determined by q-PCR.  The parental B31-5A4 wild-type (untransformed), B31::ospC 

(wt) and B31::ospC (E63Q) strains disseminated to bladder, heart and joint (Figure 20).    

The numbers of B31::ospC (E63Q) spirochetes in the bladders of infected mice were 

higher than those observed for all other strains; these differences were statistically  

83



www.manaraa.com

 

 

 

 

 

 

Figure 19.  Immune response of mice inoculated with LBD1 site-directed mutants. 

ELISAs were conducted using serum collected from mice four weeks post-inoculation.  

The infecting strain is indicated along the x axis.  The bars show the geometric mean 

antibody titer while the triangles represent each individual mouse.  The sera were 

serially diluted, screened against whole B. burgdorferi 5A4 cells immobilized on ELISA 

plates, and calculated as the inverse dilution corresponding to one-third of the plateau 

optical density.      
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Figure 20.  Spirochete burden in tissues of mice infected with LBD1 site-directed 

mutants.  Quantitative PCR was used to analyze the number of spirochetes in the 

bladders, hearts, and joints of mice infected with LBD1 site-directed mutants.  Organs 

were harvested 4 weeks after needle inoculation and DNA was isolated from each 

organ.  The spirochete burden was determined by amplification of the B. burgdorferi 

flaB gene normalized to copies of the mouse nid1 gene.  The mean is represented by 

the bar while each triangle represents an individual mouse.  Statistical significance 

(P<0.05) between the data sets is denoted by an asterisk (*).              
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significant.  No significant differences in spirochete burdens were observed among the 

strains in tibiotarsal joints.  Interestingly, very few B31::ospC (K60Y) spirochetes were 

detected in the heart (Figure 20).  However, the difference was statistically significant 

only when compared with the wild type strain and hence some caution is in order in 

assessing this data.  Nonetheless, this observation is noteworthy in light of findings 

suggesting that OspC is a determinant required for colonization of the heart (Antonara 

et al., 2007).   

3.5  Alteration of surface charge on LBD2 of B. burgdorferi OspC results in a 

failure to persist in the mouse model 

3.5.1  Site-directed mutagenesis of OspC LBD2 of B. burgdorferi B31-5A4 

In order to assess the potential role of the LBD2 region of OspC in B. burgdorferi 

infectivity and/or dissemination, site directed mutations were made within loops 2 and 3 

in order to alter the surface charge of LBD2 (Figure 21).  The amino acids selected for 

substitution occur in the same positions in other OspC types.  Two mutant strains of 

were produced:  B31::ospC (H82D/N84D/N92D) and B31::ospC (N85G/D88N/E90Q).  

For the B31::ospC (H82D/N84D/N92D) strain, positive and polar residue H82 was 

changed to an acidic and negative D residue while the polar residues N84 and N92 

were also changed to D.  These mutations resulted in an expansion of negative charge 

across the dome of OspC (Figure 22).  For the B31::ospC (N85G/D88N/E90Q) mutant, 

residue N85 was changed to G, negative and acidic residue D88 was changed to a 

neutral N, and acidic residue E90 was changed to a neutral Q.    These mutations 

resulted in a loss of much of the negative charge across LBD2 which  
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Figure 21.  Alignment of OspC loop 2/3 region showing residues chosen for LBD2 site-

directed mutagenesis.  Three residues each were chosen for mutation in the region of 

loop 2 – loop 3 of OspC for the two LBD2 mutants.  The residues chosen for mutation in 

the type A ospC gene were substituted with amino acids that occur in the same in at 

least one other OspC type.  Residues chosen for mutation are highlighted with boxes.       
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OspC A KAIGKKIHQNNGLDTENNHN
OspC B .......KNDGS.GD.A...
OspC C .......KNDVS..N.ADN.
OspC D .......D...A.G.LD...
OspC E .......GN.G-.EANQSK.
OspC F ....Q..DA.-..GVQA.Q.
OspC G .......E..-..GADA...
OspC H .......D..GT.GDDGGQ.
OspC I .......KNDVS..N.AD..
OspC J .......DN.A..GA.VGQ.
OspC K .......Q..G..AV.AG..
OspC L .......EAGGT.GSDGA..
OspC M ....NL.A..G-.NAGA.Q.
OspC N .......NN.-...DVQ.F.
OspC O .....E.GA.G-.VNQA...
OspC T ....Q..D.....SVDAG..
OspC U .....R.QA.G-.QDLQGQ.
OspC HNN .......D.D.......D..
OspC NDE ..........G..N.Q....
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Figure 22.  Electrostatic charge maps of LBD2 site-directed mutants.  The OspC dimer 

is shown in two rotations and from the top with the calculated electrostatic potential 

superimposed on the molecular surface using Swiss-PdbViewer 4.0.1.  Negative charge 

is depicted by the color red while positive charge is shown with blue.  The charge maps 

for the mutants were super imposed on the structure of wild-type type A OspC.     
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allowed for an expansion of the positive charge along the surface of the whole of OspC 

molecule (Figure 22).  Recombinant OspC protein was generated containing these site-

directed mutations.  For the rest of this manuscript, these two mutants will be referred to 

as B31::ospC (HNN) and B31::ospC (NDE).     

3.5.2  Analysis of the infectivity of isogenic strains expressing OspC LBD2 site-

directed mutations  

In order to test the infectivity of the LBD2 mutant strains, mice (n=5 per strain) 

were injected subcutaneously with the B. burgdorferi strains B31 wild-type, B31ospC, 

B31::ospC (HNN) and B31::ospC (NDE).  Ear and bladder tissues were collected four 

weeks post-injection and placed in BSK complete medium for spirochete culture.  

Spirochetes were cultivated from organs of mice inoculated with all strains except 

B31ΔospC strr and B31::ospC (NDE).  Mice infected with these two strains produced no 

spirochetes from either the ear or bladder tissues (Table 7).      

3.5.3  Analysis of the immune response to strains expressing OspC LBD2 site-

directed mutations 

ELISA and western blot analysis were used to investigate the humoral immune 

response produced by mice inoculated with the B. burgdorferi strains described above.    

All strains found to be infectious displayed high IgG titers.  Despite the absence of 

spirochetes cultured from organs, mice inoculated with B31::ospC (NDE) produced 

antibody titers that were approximately one log fold lower than those of the wild type-

infected mice and much higher than those of the noninfectious B31ΔospC strr (Figure 

23A).  Western blot analysis similarly showed antibody generated against B31::ospC  
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Table 7.  Summary of culture results from tissues of mice inoculated subcutaneously 

with B31, ospC transgenic control strains, and LBD2 site-directed mutants of OspC   
 
                                                      #Infected/Total 
 
Strain     Ear Bladder                        
B31                                               4/5 5/5    
B31::ospC (wt)                               5/5 5/5    
B31ΔospC     0/5 0/5    
B31::ospC (H82D/N84D/N92D) 5/5 5/5      
B31::ospC (N85G/D88N/E90Q) 0/5 0/5    
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Figure 23.  Immune response of mice inoculated subcutaneously with LBD2 site-

directed mutants. ELISAs were conducted using serum collected from mice four weeks 

post-inoculation.  The infecting strain is indicated along the x axis.  The bars show the 

geometric mean antibody titer while the triangles represent each individual mouse.  The 

sera were serially diluted, screened against whole B. burgdorferi 5A4 cells immobilized 

on ELISA plates, and calculated as the inverse dilution corresponding to one-third of the 

plateau optical density.    
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(NDE) binding to B31-5A4 cell lysate, indicating that, while uncultivable from ear and 

bladder tissues, this mutant was able to elicit an immune response (Figure 23B).    

3.5.4  Analysis of dissemination/persistence of isogenic strains expressing OspC 

LBD2 site-directed mutations 

The inability to culture strain B31::ospC (NDE) from ear and bladder tissues while 

still detecting an antibody response against this mutant posed the question of whether 

this result was due to lack of dissemination of the mutant to these tissues or an inability 

of this mutant to persist in the mouse for 28 days.  In order to answer this question, 

intradermal inoculations were performed.  Mice were inoculated with strains B31::ospC 

(wt) and B31::ospC (NDE).  Culture of organs taken from 1, 3, 7, 14, and 21 days post-

inoculation showed that mutant B31::ospC (NDE) was able to disseminate to all organs 

harvested but between days 7 and 14, this mutant was no longer cultivable (Figure 24).    

This result indicates that the B31::ospC (NDE) mutant is unable to persist in the mouse 

model.   

3.6  Allelic exchange replacement of ospC demonstrates the role of OspC phyletic 

type in establishment of murine infection 

3.6.1  Allelic exchange of the ospC genes of different types 

To assess the role of OspC type in infection establishment in mice, a number of 

allelic exchanged strains were created which express different ospC phyletic types.    

Nine different types were chosen for allelic exchange:  OspC type E from B. burgdorferi 

strain DRI-83a, OspC type F from B. burgdorferi strain DRI-40g, OspC type H from B. 

burgdorferi strain LDS79, OspC type M from B. burgdorferi strain Veery, OspC type PBi  
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Figure 24.  Analysis of dissemination/persistence of LBD2 site-directed mutants.  Mice 

were intradermally inoculated with LBD2 site-directed mutants.  Three mice per time 

point were sacrificed and multiple organs were harvested and placed in media to assess 

infectivity.   
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from B. garinii strain PBi, OspC type PKo from B. afzelii strain PKo, OspC type MOD-1 

from B. andersonii strain MOD-1, OspC type MOK-3a from B. andersonii strain MOK-

3a, and OspC type MOS-1b from B. andersonii strain MOS-1b (Tables 1 and 2).    

Controls included previously described strains in which the wild type gene (type A) was 

introduced in the same genetic context as the mutant (B31::ospC (wt)), and in which the 

gene was deleted entirely (B31ΔospC strr) (Earnhart et al., 2010).  An alignment of the 

different allelic exchange strains shows the amino acid variability between the OspC 

types chosen for analysis in this study (Figure 25).  Following transformation, 

streptomycin selection, and establishment of a clonal line by subsurface plating, ospC 

was confirmed by DNA sequencing and the plasmid content of each transgenic strain 

was determined.    

3.6.2  Analysis of infectivity and dissemination of strains expressing wild-type or 

OspC type switch mutants   

In order to test infectivity of the transgenic strains, mice (n=5 per group) were 

inoculated and four weeks later organs were harvested.  Additionally, mice were 

inoculated with seven of the wild type strains in order to confirm the infectivity of these 

strains.  Spirochetes were re-cultivated for all transgenic strains except B31::ospC (type 

F) and B31::ospC (type MOS-1b) in which only a single mouse was culture positive, and 

B31::ospC (type PKo), B31::ospC (type MOD-1), and B31ΔospC strains, in which none 

were positive.  Positive cultures were obtained from all mice infected by wild type 

strains, except B. afzelii PKo and B. andersonii MOD-1, MOK-3a, and MOS-1b in which 

none were positive (Table 8).     
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Figure 25.  Alignment of OspC types chosen for allelic exchange into the B31-5A4 

background.   
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Table 8. Summary of culture results from tissues of mice inoculated with parental 

strains, ospC transgenic control strains, and B31::ospC strains expressing different 
ospC types. 
 
    #Infected/Total 
 
    Ear Bladder 
Wildtype strains 
B31(type A)   5/5 5/5 
DRI-83a (type E)  5/5 4/5 
DRI-40g (type F)  5/5 5/5 
PKo (type PKo)  0/5 0/5 
PBi (type PBi)  5/5 2/5 
MOD-1 (type MOD-1) 0/5 0/5 
MOK-3a (type MOK-3a) 0/5 0/5 
MOS-1b (type MOS-1b) 0/5 0/5 
 
Transformed strains 
B31::ospC (wt)  5/5 5/5 
B31::ospC (type E)  4/5 5/5 
B31::ospC (type F)  1/5 1/5 
B31::ospC (type H)  5/5 4/5 
B31::ospC (type M)  5/5 5/5 
B31::ospC (type PKo) 0/5 0/5 
B31::ospC (type PBi) 4/5 5/5 
B31::ospC (type MOD-1) 0/5 0/5  
B31::ospC (type MOK-3a) 4/5 3/4   
B31::ospC (type MOS-1b) 1/5 1/5 
B31ΔospC   0/5 0/5 
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3.6.3  Analysis of the immune response to strains expressing wild-type or OspC 

type switch mutants     

The antibody response to infection was quantified by whole cell ELISA.    

Antibody titers for sera from mice inoculated with transgenic strains were similar in all 

mice except those infected with B31::ospC (type PKo), B31::ospC (type MOD-1), 

B31::ospC (MOS-1b), and B31ΔospC strr (Figure 26).  No mouse inoculated with 

B31::ospC (type PKo) seroconverted.  The mice inoculated with strains B31::ospC 

(MOD-1) and B31::ospC (MOS-1b) seroconverted but at a lower level than mice 

inoculated with other strains.  The titer for the single culture positive mouse infected with 

B31::ospC (type F) was approximately a log-fold higher than the titer from the culture 

negative mice, though the titer for these mice was similar to that seen in sera from 

culture positive animals infected with other strains.    

In the analysis of titers produced by mice inoculated with B. afzelii PKo wild type, 

one mouse had a titer similar to that seen in mice inoculated with strains known to be 

infectious (e.g., B31).  PCR amplification and sequencing of ospC from DNA extracted 

from tissue in that mouse demonstrated the presence of type A and E ospC.  Thus, this 

infection was likely due to the establishment of infection in that mouse by other strains 

in the non-clonal primary B. afzelii PKo isolate.  It should be noted that these strains 

were not re-cultivated from this mouse.  All mice inoculated with B. andersonii wild type 

strains showed no seroconversion.   
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Figure 26.  Immune response of mice inoculated with OspC type allelic exchange 

mutants.  ELISAs were conducted using serum collected from mice four weeks post-

inoculation.  The infecting strain is indicated along the x axis.  The bars show the 

geometric mean antibody titer while the triangles represent each individual mouse.  The 

sera were serially diluted, screened against whole B. burgdorferi 5A4 cells immobilized 

on ELISA plates, and calculated as the inverse dilution corresponding to one-third of the 

plateau optical density.    
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3.7  Investigation of the domain of OspC that influences host specificity of the 

Lyme Borrelia  

3.7.1  Design and allelic exchange of OspC type A/PKo hybrids 

In order to determine the domain of OspC responsible for host species 

specificity, mutant strains of B. burgdorferi were generated that express hybrids of 

OspC types A and PKo.  OspC was divided into three portions, LBD1/OspC core (amino 

acids 19-78, 94-140, and 158-210), LBD2a (amino acids 79-93), and LBD2b (amino 

acids 141-157) (Figure 27 A-B).  Complete ospC genes were produced that contained 

all possible combinations of these three portions.  Three mutants each contained the 

core of either ospC type A or PKo.  The different hybrids were denoted with a common 

nomenclature that included the first letter of the OspC type that comprised the core, 

either an upper case A or P, followed by the first letter (lower case) of the type that 

made up the LBD2a portion and then the first letter of the type of the LBD2b region.  For 

example, B31::ospC (hybrid Aap) contains the OspC type A core and LBD2a regions 

and the OspC type PKo LBD2b region (Figure 27 C).  The complete genes were ligated 

into the pCAEV1 vector and transformed into B. burgdorferi to generate OspC hybrid 

mutant strains (Earnhart et al., 2010).  Recombinant protein of the different hybrids was 

also generated.     

3.7.2  Analysis of infectivity of OspC type A/PKo hybrid strains in mice 

 To determine which portion(s) of OspC is necessary for infectivity in mice, 

CeH/HeJ mice were inoculated subcutaneously with spirochetes by needle injection.    

Four weeks post-inoculation the mice were sacrificed and the ear, heart, bladder and  
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Figure 27.  Design of OspC type A/PKo hybrid genes.  (A-B)  OspC was divided into 

three portions, LBD1/OspC core (amino acids 19-78, 94-140, and 158-210), LBD2a 

(amino acids 79-93), and LBD2b (amino acids 141-157).  Boxes and an OspC model 

are used to highlight the two portions of LBD2 chosen.  (C)  Schematic of the OspC 

hybrids created.             
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Table 9.  Summary of culture results from tissues of mice inoculated with ospC 
transgenic control strains and B31::ospC (A/PKo) hybrid strains. 
 

#Infected/Total 
 
Strain     Ear Bladder    Heart Joint Totala                     
B31::ospC (wt)                               4/4 4/4       2/4 3/4 4/4 
B31::ospC (type PKo)   0/4 0/4       0/4 0/4 0/4 
B31::ospC (hybrid Aap)  2/4 2/4       2/4 2/4 4/4 
B31::ospC (hybrid Apa)  4/4 2/4            4/4 2/4 4/4 
B31::ospC (hybrid App)  4/4 3/4            2/4 3/4 4/4 
B31::ospC (hybrid Paa)  0/4 0/4       0/4 0/4 0/4 
B31::ospC (hybrid Pap)  4/4 2/4       3/4 3/4 4/4 
B31::ospC (hybrid Ppa)  4/4 2/4       4/4 1/4 4/4 
 
a Total mice infected column included due to the fact that organ data does not 
accurately depict number of infected animals. 
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tibiotarsal joint tissues were harvested and cultured in order to assess infectivity.  The 

strains B31::ospC (type PKo) and B31::ospC (hybrid Paa) showed no spirochetes in any 

of the organs cultivated (Table 9).  All other strains were able to be cultivated out of at 

least one organ cultured.                   

3.7.3  Analysis of immune response to OspC A/PKo hybrid strains generated by 

mice.   

ELISA using immobilized whole B. burgdorferi cells were used to assess the 

humoral response generated by both mice and hamsters inoculated with the OspC type 

A/PKo hybrid mutants.  All mutants that were culture positive also displayed high IgG 

titers.  Mice inoculated with B31::ospC (type PKo) had a detectable but extremely low 

titer while mice inoculated with B31::ospC (hybrid Paa) produced a titer that was similar 

to infectious strains (Figure 28).    
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Figure 28.  Immune response of mice inoculated with OspC type A/PKo hybrids. 

ELISAs were conducted using serum collected from mice four weeks post-inoculation.  

The infecting strain is indicated along the x axis.  The bars show the geometric mean 

antibody titer while the triangles represent each individual mouse.  The sera were 

serially diluted, screened against whole B. burgdorferi 5A4 cells immobilized on ELISA 

plates, and calculated as the inverse dilution corresponding to one-third of the plateau 

optical density.    
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Chapter 4:  Discussion 

 

4.1  OspC residue C130 plays a role in oligomerization 

OspC is an important virulence factor for the Lyme Borrelia (Earnhart et al., 2007; 

Earnhart and Marconi, 2007b, c; Grimm et al., 2004; Pal et al., 2004; Stewart et al., 

2006; Tilly et al., 1997; Tilly et al., 2006; Tilly et al., 2007).  Efforts to define the function 

of OspC have been significantly enhanced by recent analyses of OspC structure-

function relationships (Earnhart et al., 2010; Eicken et al., 2001; Kumaran et al., 2001a; 

Kumaran et al., 2001b; Wang et al., 1999).  A postulate that has not yet been tested is 

that OspC may form functionally and immunologically significant arrays in the Borrelia 

outer membrane (Lawson et al., 2006).  While freeze-fracture microscopic analyses 

indicate the existence of membrane protein arrays in B. burgdorferi, the composition of 

these arrays have not yet been determined (Radolf et al., 1994).  Here we test the 

hypothesis that hydrophobic based-OspC dimers form biologically relevant higher order 

oligomers that result from interdimeric disulfide bonding mediated by residue C130.  To 

assess this, a recombinant site-directed OspC mutant protein (r-OspC (C130A)) and a 

B. burgdorferi strain that produces this site-directed mutant (B31::ospC (C130A)) were 

generated and OspC oligomerization tested (Earnhart et al., 2011).  Recombinant wild 

type OspC formed oligomeric chains of two to five dimers (Figure 14).  Formation of 

these oligomers was eliminated by reducing conditions and proved to be strictly 
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dependent on C130 (Figure 13).  While technical limitations prevented the direct 

assessment of OspC oligomeric length at the Borrelia cell surface, the occurrence of 

disulfide bonded OspC at the cell surface and the data obtained with recombinant 

proteins support the notion that disulfide-dependent oligomers form in vivo.    

Direct functional assays for OspC have not yet been defined.  However, due to 

the essential nature of OspC, mutations that perturb critical determinants of the protein 

can be identified by assessing infectivity in mice.  To determine if OspC oligomerization 

is required for OspC to carry out its in vivo function, wild type and B31::ospC (C130A) 

strains were inoculated into mice and infectivity and dissemination assessed.  While 

substitution of C130 with Ala prevents higher order oligomerization, it did not abolish 

infectivity as inferred by seroconversion and the ability to cultivate spirochetes from ear 

punch biopsies of inoculated mice.  Dissemination was assessed by cultivation of 

biospy samples harvested at sites distal from the original inoculation site (Table 4).  An 

apparent difference in dissemination potential was not observed.  These analyses 

definitively demonstrate that disulfide bond mediated oligomerization is not required for 

survival and dissemination within the mammalian host.   

In summary, it can be concluded that OspC is able to form oligomers on the cell 

surface of B. burgdorferi.  It has also been shown through this study that disulfide bond 

mediated oligomerization is not required for OspC to function in the establishment of 

infection, dissemination or the generation of a robust and potentially productive antibody 

response(Earnhart et al., 2011).   
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4.2  The highly conserved C-terminal domain of OspC is not required for OspC 

function in the mouse model 

 The highly conserved C-terminal 10 amino acids of OspC have been 

hypothesized to have multiple functions.  Here the potential functional role and 

antigenicity of the conserved C-terminus of OspC is investigated.  To accomplish this, 

ospC was replaced in its native location with ospC lacking the C-terminal ten amino 

acids (C10).  The resultant B31::ospC (ΔC10) strain was screened for plasmid loss, 

growth rate, and surface expression and presentation of OspC, all of which are similar 

to wild type.  It can be concluded that deletion of C10 does not alter expression or 

export of OspC to the outer membrane (Kumru et al., 2011) (Figures 9 and 10).     

 Targeted mutations in conserved, surface-exposed OspC residues have been 

successfully used to define structurally and functionally important domains and residues 

(Earnhart et al., 2010; Earnhart et al., 2011).  In this study it is hypothesized that 

conservation in the C10 sequence (PVVAESPKKP) is due to functional constraints on 

sequence variation.  Several functions for this domain have been proposed.  It has been 

suggested that C10 adopts a polyproline II helical conformation (Mathiesen et al., 

1998b) – a secondary structure associated with protein-protein interactions and 

bacterial adhesins (Brady et al., 2010).  C10 also has sequence similarity with the 

consensus recognition sequence for src homology domain 3 (SH3) proteins – a 

potential bacterial virulence mechanism (Aitio et al., 2010; Ren et al., 1993).  Lagal et al. 

(2006) hypothesized that the C-terminal lysine residues are involved in binding 

plasminogen.  Cell surface associated plasminogen could aid in spirochete 

dissemination through the proteolysis of extracellular matrix proteins.  To determine if 
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C10 participates in plasminogen binding, r-OspC (ΔC10) was used in binding assays to 

determine if the C10 amino acids facilitate this interaction (Figure 16).  Deletion of the 

C10 domain did not have a significant impact on plasminogen binding, therefore it can 

be concluded that C10 is not required for plasminogen binding.    

 To determine if C10 domain is required for OspC function in vivo, mice were 

inoculated with control or transgenic strains.  All mice inoculated with B31, B31::ospC 

(wt) and B31::ospC (ΔC10) strains yielded positive cultures.  As expected, the negative 

control B31ΔospC strain was non-infectious.  The immune response generated by mice 

inoculated with these strains confirmed infectivity.  Thus, by this route of infection, the 

C10 domain is not required for OspC function in vivo (Table 5).     

 OspC is of considerable interest as a diagnostic antigen because of its early and 

high level expression during mammalian infection.  A number of studies have used 

peptides based on the conserved C-terminal 7 to 10 amino acids of OspC as an 

immobilized antigen to detect early Borrelia-specific immune responses (Bacon et al., 

2003; Du et al., 2007; Jobe et al., 2003; Jobe et al., 2008; Lovrich et al., 2005; Lovrich 

et al., 2007; Mathiesen et al., 1996; Mathiesen et al., 1998a; Mathiesen et al., 1998b; 

Nagel et al., 2008; Panelius et al., 2002; Porwancher et al., 2011; Qiu et al., 2000).  The 

majority of these studies have found an early, predominantly IgM response to this 

epitope, and it has been suggested that this may be due to a T-cell-independent 

response mediated by the presentation of this epitope in a repetitive fashion at the cell 

surface (Du et al., 2007; Earnhart et al., 2011; Mathiesen et al., 1998b).  Alternatively, it 

has been suggested that the predominant IgM response is associated with infection in 

certain niches (e.g., the central nervous system in neuroborreliosis) (Fung et al., 1994; 
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Mathiesen et al., 1998b).  The data presented herein demonstrate that the C-terminus 

can induce an IgG response following infection by needle inoculation in mice (Figure 

17).   Comparison of the reactivity of sera generated during infection with B31, 

B31::ospC (wt), or B31::ospC (ΔC10) demonstrates that while C10 induces an IgG 

response, it is not an immunodominant epitope.  This is clearly demonstrated by the 

similarity in IgG titers of mice infected with B31 versus B31::ospC (ΔC10) when 

screened against r-OspC (wt) and r-OspC (ΔC10).  The response to the C10 domain is 

in agreement with previous epitope mapping studies, though the minor relative 

contribution of the C10 domain was not evident in the non-quantitative maps (Earnhart 

et al., 2005).  Mapping studies have also demonstrated an early response to linear 

epitopes in the loop 5 and alpha helix 5 regions (Earnhart et al., 2005).  Based on the 

current data, the sensitivity of an OspC-based diagnostic would likely be further 

improved by inclusion of epitopes derived from regions outside of C10.  Antibodies 

generated against the OspC C10 epitope have been found to be bactericidal against 

Borrelia in vivo (Lovrich et al., 2005; Lovrich et al., 2007).  In contrast with earlier reports 

of poor immunogenicity of this domain in mice (Lovrich et al., 2005), in the current study 

there was clearly an induction of C10 specific IgG during infection.  The induced 

antibodies are specific to the C-terminus, as evidenced by the lack of any anti-C10 

reactivity in mice infected with B31::ospC (ΔC10).    

4.3  OspC LBD1 plays a crucial role in the ability of B. burgdorferi to establish 

mammalian infection 

While gene deletion analyses have advanced the understanding of when OspC 

participates in the enzootic cycle, its biological function remains unknown (Earnhart et 
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al., 2010; Fingerle et al., 2007; Gilmore and Piesman, 2000; Grimm et al., 2004; Pal et 

al., 2004; Tilly et al., 2006; Tilly et al., 2007).  In this study, the hypothesis that LBD1 is 

a key determinant of OspC function in the mammalian environment was tested.  Site-

directed mutations were introduced into the type A ospC gene of B. burgdorferi and the 

mutated genes were transformed into an isogenic background.  Residues K60, E61, 

and E63, which are invariant or highly conserved (Earnhart and Marconi, 2007a) and 

which possess side chains that extend into the solvent accessible pocket of LBD1, were 

targeted for mutagenesis.  Analysis of the resulting recombinant strains revealed that 

the expression, export, and presentation of the modified proteins on the cell surface 

were similar to the wild type strain.  All strains maintained wild type growth rate and the 

full complement of plasmids (with the exception of the non-essential lp21 in some 

strains).  Infectivity was assessed in mice through needle inoculation with cultivation 

and seroconversion serving as the read out.  The parental wildtype B31-5A4 strain 

(untransformed), B31::ospC (wt), B31::ospC (E63Q), and the B31::ospC (K60Y) strains 

were infectious while B31ΔospC, B31::ospC (E61Q/E63Q), and B31::ospC (E61Q) 

strains were non-infectious.  It is striking that a single amino acid substitution at position 

61 proved sufficient to render cells non-infectious, presumably by inactivating the critical 

functions associated with the OspC protein during the establishment of infection.  For 

those strains that retained infectivity, the possibility that the amino acid substitutions 

introduced into LBD1 affect dissemination characteristics was assessed by determining 

the number of spirochetes present at different anatomical sites by q-PCR.  Higher 

numbers of B31::ospC (E63Q) in the urinary bladder and lower numbers of B31::ospC 

(K60Y) in the heart were observed (Earnhart et al., 2010).  These results are consistent 
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with the hypothesis that dissemination characteristics can be attributed, at least in part, 

to the physiochemical properties of OspC (Alghaferi et al., 2005; Brisson and 

Dykhuizen, 2004; Earnhart et al., 2005; Jones et al., 2006; Seinost et al., 1999; 

Wormser et al., 2008).   

There are several possible explanations for the inability of the B31::ospC (E61Q) 

and B31::ospC (E61Q/E63Q) strains to establish infection.  Since these strains are 

isogenic derivatives of the parental strain, the most direct explanation is that the loss of 

infectivity is a direct result of the modification of the OspC itself.  The loss of infectivity 

would imply that OspC has a specific function during early stage infection that cannot be 

fulfilled by any other Borrelia protein.  As discussed above, the biological properties of 

these and control strains suggest that they are not compromised in any way.  At the 

molecular level, the amino acid substitutions could cause structural changes that ablate 

function.  However, this possibility is not supported by circular dichroism and 

dimerization analyses that indicate that OspC structure and dimerization are largely 

unaffected.  A second possibility is a direct role for residue E61 as a ligand contact 

point.  Alternatively, E61 may indirectly influence the function of LBD1 through alteration 

of its local surface charge.  While this possibility cannot be ruled out, it is noteworthy 

that the CD spectra for the E63Q and E61Q mutants which are associated with 

infectivity and loss of infectivity, respectively, have nearly identical surface charge maps 

(data not shown).  In either case, it is clear that LBD1 and E61 are central in OspC‟s in 

vivo function.    

This data is the first to provide direct evidence that a specific domain of OspC is 

required for in vivo function.  Specifically, it has been demonstrated that residue E61 is 
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required for infectivity and suggestive evidence has been provided that residues E63 

and K60 influence dissemination.  While these may not be the only functionally 

important residues of OspC, the data firmly support the importance of LBD1 in OspC 

function.  The results presented here challenge recent hypotheses regarding the role of 

OspC in Borrelia pathogenesis.  Consistent with the phylogenetic, structural, and charge 

properties of OspC, our lab favors the hypothesis that OspC binds a small ligand that 

may be present in blood, extracellular fluid or possibly tissue that functions to facilitate 

the adaptive changes required for survival during the early stages of infection.  Once the 

spirochetes adapt, OspC is no longer required and is down-regulated.  Such a model is 

consistent with the requirement of OspC for establishing infection in mice by tick or 

needle inoculation routes but not by tissue transplantation (Tilly et al., 2006).  In the 

latter case, the spirochetes would already be “host-adapted” and would not require 

OspC.  With wild type and “loss of function” OspC mutant proteins in hand, it may be 

possible to devise high-throughput screening assays designed to identify OspC ligands 

that interact with LBD1 and thus unravel the function of OspC in Borrelia biology.   

4.4   Alteration of surface charge on LBD2 of B. burgdorferi OspC results in a 

failure to persist in the mouse model 

 The largest amount of intertype variability of OspC occurs in LBD2.  This 

variation results in great changes in the electrostatic potential of the protein in this area.    

In order to investigate the role of surface charge of OspC LBD2 in B. burgdorferi 

pathogenesis, two site-directed mutants were generated, B31::ospC (HNN) and 

B31::ospC (NDE).  Both of these mutants contained all the B31 plasmids, typical growth 

rates, and express OspC normally.  Upon infection in mice, it was found that the 
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B31::ospC (HNN) mutant retained full infectivity and was able to disseminate to both ear 

and bladder tissues.  Conversely, the B31::ospC (NDE) mutant, while able to 

disseminate normally, was completely cleared from mice by fourteen days post-

inoculation.  This result indicated that the B31::ospC (NDE) mutant is unable to persist 

in the mouse model.   

There are several physicochemical differences between the B31::ospC (NDE) 

mutant and the known B. burgdorferi OspC types, including differences in predicted 

electrostatic surface charge and isoelectric point (pI).  Electrostatic charge maps were 

generated for both LBD2 mutants.  The B31::ospC (HNN) mutant was found to have a 

large dome of negative charge on LBD2 while the B31::ospC (NDE) mutant has very 

little negative charge and an expansion of positive charge around LBD2.  Charge maps 

have been generated by our lab for several additional OspC types including OspC types 

A, E, F, H, M, PKo and PBi.  None of the OspC types that have been mapped have as 

much positive charge on LBD2 as the B31::ospC (NDE) mutant.  Additionally, the pI of 

LBD2 was calculated for the OspC types commonly found in B. burgdorferi and for the 

LBD2 mutants.  While the pI of the B31::ospC (HNN) mutant (pI = 4.35) fell within the 

range of the other OspC types (4.03 – 5.37), the pI of B31::ospC (NDE) LBD2 was 

greater, being 6.28.  These differences in surface charge and pI may account for the 

differences in observed with the B31::ospC (NDE) mutant in vivo.                     

 There have been other studies in which B. burgdorferi mutants were able to 

cause infection but not persist in the animal model.  For example, a previous study 

expressed ospC in an ospC deletion strain on a nonessential plasmid.  In this study 

ospC was under the control of a constitutively active flaB promoter.  When 
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immunocompetent mice were inoculated with this strain, the only recoverable 

spirochetes had lost this plasmid.  Due to the fact that OspC is highly antigenic during 

infection, a robust immune response is generated against this protein.  It was suggested 

that the anti-OspC immune response mounted by the host provides a selective pressure 

against the spirochetes expressing OspC, clearing all spirochetes that did not lose the 

plasmid (Tilly et al., 2006).  This study was able to show that when OspC is not 

downregulated in the correct timeframe, the humoral immune response is able to clear 

the infection.  Additionally, it has been shown that B. burgdorferi strains lacking the 

plasmid lp28-1, which harbors the VlsE gene system, are cleared from 

immunocompetent mice between seven and fourteen days post-inoculation (Embers et 

al., 2008).  It has also been demonstrated that spirochetes lacking lp28-1 showed 

higher and sustained OspC production during the shortened infection in 

immunocompetent mice, infection in SCID mice, and when cultured in dialysis 

membrane chambers (DMCs).  This study hypothesized that a repressor encoded on 

lp28-1 is responsible for ospC downregulation and when this plasmid is missing, 

continued OspC expression results in clearance by the humoral immune response 

(Embers et al., 2008).  Due to the fact that the surface charge of the B31::ospC (NDE) 

mutant is changed significantly from that of other OspC types, the change in charge 

could result in disrupted or altered interaction with this hypothesized repressor.  If a 

change in this interaction occurred, it would account for the lack of persistence of the 

B31::ospC (NDE) mutant strain.   

 The research presented here on LBD2 suggests that the surface charge of the 

variable portion of OspC plays an important role in the ability of B. burgdorferi to persist 
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in mice during infection.  The spirochetes are able to disseminate to multiple 

organs/tissues in the body and induce an antibody response in the mice but the 

infection is cleared between seven and fourteen days post-inoculation.  This is the first 

study to demonstrate the role of a specific portion of OspC in B. burgdorferi persistence.    

In the future, studies to confirm antibody clearance of the B31::ospC (NDE) mutant by 

the immune response will be performed in order to begin investigating the role of this 

portion of OspC in ospC downregulation.       

4.5  Allelic exchange replacement of ospC demonstrates the role of OspC phyletic 

types in establishment of murine infection  

Multiple OspC phyletic types have been identified from the Borrelia strains B. 

burgdorferi, B. garinii, and B. afzelii.  These different OspC types have been shown to 

have type-specific differences in reservoir host specificity/association and in the 

presence of human disseminated infection.  In this study, multiple OspC types were 

chosen to be inserted into the B31-5A4 genetic background using allelic exchange, 

replacing the native OspC type A.  For this study, OspC types were selected from a 

variety of different Borrelia species.  OspC types E, F, H, and M are found in the B. 

burgdorferi strains DRI-83a, DRI-40g, LDS79, and Veery, respectively.  OspC types PBi 

and PKo were amplified from the European Lyme disease strains B. garinii strain PBi 

and B. afzelii strain PKo and finally, the B. andersonii OspC types MOD-1, MOK-3a, and 

MOS-1b were cloned from the strains of the same name.  There were varying reasons 

for the selection of these different OspC types including differences in tissue 

dissemination, isolate origin, and host species specificity/association.  To confirm the 

infectivity status of the strains from which the OspC types were chosen, these strains 
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were injected into mice and all were found to be infectious except for B. afzelii PKo and 

all three B. andersonii strains.  Once the selected OspC types were inserted into B31-

5A4 in place of the native type A ospC gene, the resulting transgenic strains were used 

to investigate the effect of OspC type alone on infectivity in the mouse.  Most of the 

transgenic strains were found to retain full infectivity in mice (B31::ospC (wt), B31::ospC 

(E), B31::ospC (H), B31::ospC (M), B31::ospC (PBi), and B31::ospC (MOK-3a)) but four 

strains showed altered infectivity.  Two of the OspC type switch strains, B31::ospC (F) 

and B31::ospC (MOS-1b), were cultivable from only one out of five mice inoculated with 

these strains while another two transgenic strains, B31::ospC (PKo) and B31::ospC 

(MOD-1), were unable to infect mice.  This is the first study to show a relationship 

between OspC type and infectivity in an animal model, regardless of the rest of the 

genetic background of the infecting strain.      

The wild type strains used in this analysis have varying host specificities.  The 

parental strain B. burgdorferi B31-5A4 is used extensively in vitro and is known to be 

highly infectious in mice.  This strain was originally isolated from a tick collected in New 

York (Fraser et al., 1997).  Several strains in this analysis were obtained from humans 

with Lyme disease, including B. afzelii strain PKo, B. garinii strain PBi, and B. 

burgdorferi strain LDS79.  All these strains were found to infect mice except B. afzelii 

PKo.  This strain has previously been shown to be unable to cause murine infection 

(Bockenstedt et al., 1997) but is able to infect gerbils (Preac-Mursic et al., 1992) and 

hamsters (data not shown).  Several of the wild type strains used in these analyses 

were isolated from animals.  The strains from which OspC types E and F were 

amplified, DRI-83a and DRI-40g, were isolated from dogs experimentally infected with 
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B. burgdorferi.  OspC type M comes from the Veery strain which was isolated from a 

bird (Anderson et al., 1986).  Additionally, all of the B. andersonii strains used were 

isolated from ticks obtained from rabbits (Lin et al., 2002).  The differing locations of 

origins of these isolates made them attractive candidates for an analysis into the role of 

OspC in host specificity.              

 The cause for the lack of infectivity or reduced infectivity of the PKo, MOD-1, type 

F, and MOS-1b transgenic strains could be attributed to multiple possibilities.  The 

B31::ospC (type PKo) and B31::ospC (type MOD-1) support the hypothesis that the 

OspC protein mediates infectivity in different hosts.  The B31::ospC (type PKo) strain 

did not grow out of any organs nor did the mice inoculated with this strain show any 

seroconversion.   As the only difference between this strain and the parental B31-5A4 is 

the presence of OspC type PKo instead of OspC type A, it is possible that it is the 

presence of OspC type PKo that renders this previously infectious strain non-infectious 

in mice.  The B31::ospC (MOD-1) strain is also noncultivable, yet the mice inoculated 

with this strain did seroconvert at a very low level.  The B31::ospC (MOS-1b) strain was 

only able to be cultivated out of one mouse and showed a low level of seroconversion.    

With the wild type B. andersonii MOD-1 and MOS-1b strains both being noninfectious, 

these results indicate that perhaps these two strains were able to set up but not 

maintain a long term infection in mice.  These three transgenic strains support the 

hypothesis that OspC plays a role in the ability of B. burgdorferi to infect mice.   

 The infection data from two transgenic and wild type strains contradict the data 

presented above.  First, the wild type strain for OspC type F was found to be fully 

infectious in mice while the transgenic strain, B31::ospC (type F), showed reduced 
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infectivity.  Of the five mice inoculated with this strain, only one mouse showed 

spirochete grow out and several others produced low level seroconversion.  This could 

be due to altered dissemination.  Only ear and bladder tissues were used for infectivity 

analysis.  It is possible that the B31::ospC (type F) strain has altered dissemination and 

was not present in detectable numbers in the tissues that we collected.  Repeating this 

infection and sampling more tissues might help to clarify this result.  The data obtained 

from the wild type and transgenic strains harboring OspC type MOK-3a produced 

results that are actually the opposite of the hypothesis.  The wild type B. andersonii 

strain was noninfectious in mice but the transgenic strain was both cultivable and 

induced a robust immune response.  This result could be due to problems with the wild 

type strain.  This strain was isolated from a nymphal tick collected off of a rabbit.  The 

full plasmid repertoire of B. andersonii is not known so it is possible that the wild type B. 

andersonii MOK-3a strain is missing plasmids necessary for infection.  If this is the case 

and lack of infectivity of the wild type strain is due to a factor other than the OspC type, 

full infectivity of the transgenic strain would be expected.  Further analysis of these wild 

type and transgenic strains is warranted to clarify these results.      

 In summary, B31-5A4 mutants expressing different OspC types have been used 

to show a relationship between OspC type and infectivity in mice.  These analyses have 

shown that OspC type alone is enough to render a previously infectious strain non-

infectious.   While further research is needed to fully understand this relationship, it is 

clear that OspC type does play a role in the ability of B. burgdorferi to infect certain 

hosts.       
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4.6  Investigation of the domain of OspC that influences host specificity of the 

Lyme Borrelia 

 OspC types A and PKo have been shown to have differing host specificities.  As 

discussed above, the B. burgdorferi B31-5A4 strain that expresses OspC type A is 

highly infectious in mice while the B. afzelii strain PKo that expresses OspC type PKo is 

not.  As described in the above section, an allelic exchange mutant of B31-5A4 

expressing OspC type PKo instead of type A completely lost the ability to cause 

infection in mice.  In order to further investigate this finding, B31-5A4 mutants were 

created that express OspC hybrids of types A and PKo.  Infectivity analysis showed that 

in addition to the B31::ospC (type PKo) strain only one OspC hybrid-expressing strain, 

B31::ospC (hybrid Paa), lost the ability to maintain an infection in mice.   

 There are a variety of reasons that this particular transgenic strain was 

uncultivable from mice.  The strains B31::ospC (type PKo) and B31::ospC (hybrid Paa) 

have both similarities and differences.  Both strains contain the exact same genetic 

background and only have one plasmid difference.  B31::ospC (type PKo) is missing 

plasmid lp5, which has been shown to have no effect on in vitro cultivation.  Both of 

these strains were shown to export and present OspC at the same levels as all other 

strains tested while also growing in vitro at the same rate.  Lastly, both strains, along 

with the fully infectious hybrids B31::ospC (hybrid Pap) and B31::ospC (hybrid Ppa), 

contain the core of OspC type PKo, which includes LBD1.  The major difference 

between these strains exists on the LBD2 portion of the protein.  The B31::ospC (hybrid 

Paa) strain expresses an OspC protein with the full type A LBD2.  B31-5A4, when 

expressing OspC type A, is highly infectious in mice.  Therefore, all portions of the 
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hybrid Paa OspC protein can be found in strains that are infectious in the mouse.  This 

data suggests that there is not one clear potion of OspC that is involved in infectivity in a 

particular host.   

 The mice inoculated with the B31::ospC (hybrid Paa) strain generated a low but 

detectable immune response (Figure 28).  This suggests that, like many of the 

previously described mutant strains, the B31::ospC (hybrid Paa) mutant was able to 

briefly establish an infection but was then cleared.  It is thought that OspC plays multiple 

roles in the pathogenesis of B. burgdorferi and mutants such as the B31::ospC (hybrid 

Paa) strain indicate that perhaps not all OspC proteins are able to carry out the different 

functions of this protein.  This could be the cause for very little observed recombination 

of OspC in nature.  Perhaps recombination events occur more regularly than previously 

thought but the new OspC types are not functional.   In summary, based on these 

results it appears that no one portion of OspC mediates the ability of B. burgdorferi to 

infect different animals.                        

4.7  Summary 

 The data presented in this dissertation reflects the great body of knowledge 

about OspC that has been generated by our lab.  OspC is one of the few known 

virulence factors of B. burgdorferi and the study of the structure/function relationships of 

this protein is complicated by the lack of an identified functional ligand and/or a defined 

mechanism of action.  Our lab has developed a novel approach to study this protein by 

creating allelic exchange mutants that express any OspC type or mutant from the native 

location of ospC in the B. burgdorferi genome.  Most studies focusing on OspC utilize 
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deletion strains that express ospC mutations from a plasmid (Pal et al., 2004; Tilly et al., 

2006; Tilly et al., 2007; Yang et al., 2005).  The method used in our lab allows us to 

study OspC that is expressed in the same way as wild type and without differences in 

plasmid copy number.  Also, creating allelic exchange mutants has allowed for the 

targeted study of different portions of OspC and how these portions play a role in OspC 

function without having a defined ligand.  Using this allelic exchange method and 

generating many different mutations to the conserved and variable portions of OspC 

has helped our lab to create a comprehensive map of the structure function 

relationships of OspC.  These mutants provide an ideal tool for deciphering the ligand 

and/or function of OspC.       

The calculated size of the solvent accessible pocket of LBD1 suggests its 

potential ligands would be relatively small (Eicken et al., 2001; Kumaran et al., 2001b).    

It was postulated in an earlier study that the region of OspC, designated by our lab as 

LBD1, may be an aspartate binding domain (Eicken et al., 2001).  The Salmonella 

typhimurium aspartate receptor, which is involved in chemotaxis and signaling (Yeh et 

al., 1996), possesses a four alpha helical bundle similar to that present in OspC.   

However, other than structural similarity there is no discernable sequence homology 

between these proteins.  While it seems unlikely that OspC binds aspartate, the general 

hypothesis that LBD1 is involved in the binding of small ligands is supported by its 

structural properties, the results presented herein.  While the identity of the ligands that 

interact with LBD1 remain unknown, there is now strong and compelling evidence that 

LBD1 is a key functional determinant of OspC that plays an essential role in the 

establishment of infection in mammals.   
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It is important to note that OspC has been reported to bind at least two other 

ligands, the Salp15 protein of Ixodes ticks (Das et al., 2001; Hovius et al., 2007) and the 

mammalian-derived protein plasminogen (Lagal et al., 2006).  The domains and 

residues of OspC that are involved in these interactions have not been identified.  In this 

dissertation, the OspC interaction with Salp-15 was not specifically assessed.    

Plasminogen binding assays were conducted with all mutant strains described in this 

dissertation (Figure 16 and data not shown).  None of the mutants displayed attenuated 

plasminogen binding, therefore it does not appear that plasminogen is the critical ligand 

for OspC.  Interestingly, the E61Q/E63Q protein, a mutant strain that was shown to be 

noninfectious, bound plasminogen at a higher level than wild type protein.  The extent to 

which the OspC-plasminogen interaction contributes to pathogenesis remains to be 

directly assessed and such analyses are complicated by the fact that Borrelia produce 

several plasminogen binding proteins including OspE and CspZ (factor H binding 

proteins) (Brissette et al., 2009; Hovis et al., 2006).   

Several opposing hypotheses have been offered regarding OspC function 

(Radolf and Caimano, 2008).  It has been postulated that OspC does not have a 

specific or unique function and instead, by simple virtue of its abundance, serves to 

maintain membrane integrity (Xu et al., 2008).  It was reported that the introduction of 

random lipoprotein genes (OspE, OspA, VlsE and DbpA) on an autonomously 

replicating plasmid restored infectivity to an ospC knock out strain in SCID mice (but 

less so in immunocompetent mice).  From this it was concluded that structurally 

unrelated proteins are functionally equivalent (i.e., the “surrogate hypothesis”).  If OspC 

can be replaced by randomly selected, unrelated Borrelia lipoproteins, it is not clear why 
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OspC variants with single amino acid substitutions that are unaltered in structure and 

expressed at wild type levels, cannot complement the putative membrane integrity 

maintenance function of OspC.  In addition, if OspC could be replaced by other 

lipoproteins, it could be argued that ospC-deficient strains would have emerged in 

nature since there would be no selective advantage in maintaining such a gene.  

Analyses of hundreds of Lyme disease isolates have showed that OspC is universal in 

all Lyme Borrelia species and homologs are carried by all relapsing fever spirochete 

species and isolates [(Marconi et al., 1993b; Margolis et al., 1994).  These facts, 

coupled with ospC phylogenetic analyses which indicate selective constraints on OspC 

sequence variation within specific domains, including LBD1, C10, and C130 (Attie et al., 

2007; Baranton et al., 2001; Earnhart and Marconi, 2007a; Lagal et al., 2002; Lin et al., 

2002; Qiu et al., 2008; Theisen et al., 1993), strongly argue against the “surrogate 

hypothesis”.   

In this dissertation, we have presented the first studies to (a) demonstrate the 

presence of OspC oligomers in vitro and in vivo while also identifying the residue that 

mediates oligomer formation, (b) identify a specific domain and a single amino acid 

critical to OspC function, (c) demonstrate that changes in OspC surface charge can 

alter persistence, and (d) abolish infectivity in a certain host by changing only the OspC 

type expressed by the inoculating strain.  We have also shown that the C10 portion of 

OspC does not appear to interact with plasminogen or have a role in infectivity.  In 

conclusion, it is clear that OspC plays a vital role in the ability of B. burgdorferi to cause 

infection and that the many functional roles of OspC are mediated by domains/residues 

in both the conserved and variable portions of this protein.  The research presented in 
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this dissertation has added significantly to the body of knowledge of the role of OspC in 

B. burgdorferi pathogenesis.      
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